Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Arithmetic–geometric mean
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== Both the geometric mean and arithmetic mean of two positive numbers {{mvar|x}} and {{mvar|y}} are between the two numbers. (They are ''strictly'' between when {{math|''x'' ≠ ''y''}}.) The geometric mean of two positive numbers is [[Inequality of arithmetic and geometric means|never greater than the arithmetic mean]].<ref>{{cite book |last=Bullen |first=P. S. |contribution=The Arithmetic, Geometric and Harmonic Means |date=2003 |url=http://link.springer.com/10.1007/978-94-017-0399-4_2 |title=Handbook of Means and Their Inequalities |pages=60–174 |access-date=2023-12-11 |place=Dordrecht |publisher=Springer Netherlands |language=en |doi=10.1007/978-94-017-0399-4_2 |isbn=978-90-481-6383-0}}</ref> So the geometric means are an increasing sequence {{math|''g''{{sub|0}} ≤ ''g''{{sub|1}} ≤ ''g''{{sub|2}} ≤ ...}}; the arithmetic means are a decreasing sequence {{math|''a''{{sub|0}} ≥ ''a''{{sub|1}} ≥ ''a''{{sub|2}} ≥ ...}}; and {{math|''g<sub>n</sub>'' ≤ ''M''(''x'', ''y'') ≤ ''a<sub>n</sub>''}} for any {{mvar|n}}. These are strict inequalities if {{math|''x'' ≠ ''y''}}. {{math|''M''(''x'', ''y'')}} is thus a number between {{math|''x''}} and {{math|''y''}}; it is also between the geometric and arithmetic mean of {{math|''x''}} and {{math|''y''}}. If {{math|''r'' ≥ 0}} then {{math|''M''(''rx'', ''ry'') {{=}} ''r M''(''x'', ''y'')}}. There is an integral-form expression for {{math|''M''(''x'', ''y'')}}:<ref>{{dlmf|first1=B. C.|last1=Carson|id=19.8.i|title=Elliptic Integrals|mode=cs1}}</ref><math display=block>\begin{align} M(x,y) &= \frac{\pi}{2} \left( \int_0^\frac{\pi}{2}\frac{d\theta}{\sqrt{x^2\cos^2\theta+y^2\sin^2\theta}} \right)^{-1}\\ &=\pi\left(\int_0^\infty \frac{dt}{\sqrt{t(t+x^2)(t+y^2)}}\right)^{-1}\\ &= \frac{\pi}{4} \cdot \frac{x + y}{K\left( \frac{x - y}{x + y} \right)} \end{align}</math>where {{math|''K''(''k'')}} is the [[elliptic integral|complete elliptic integral of the first kind]]:<math display="block">K(k) = \int_0^\frac{\pi}{2}\frac{d\theta}{\sqrt{1 - k^2\sin^2\theta}} </math>Since the arithmetic–geometric process converges so quickly, it provides an efficient way to compute elliptic integrals, which are used, for example, in [[elliptic filter]] design.<ref name="Dimopoulos2011">{{cite book |author-first=Hercules G. |author-last=Dimopoulos |title=Analog Electronic Filters: Theory, Design and Synthesis |url=https://books.google.com/books?id=6W1eX4QwtyYC&pg=PA147 |year=2011 |publisher=Springer |isbn=978-94-007-2189-0 |pages=147–155 }}</ref> The arithmetic–geometric mean is connected to the [[Theta function|Jacobi theta function]] <math>\theta_3</math> by<ref>{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} pages 35, 40</ref><math display="block">M(1,x)=\theta_3^{-2}\left(\exp \left(-\pi \frac{M(1,x)}{M\left(1,\sqrt{1-x^2}\right)}\right)\right)=\left(\sum_{n\in\mathbb{Z}}\exp \left(-n^2 \pi \frac{M(1,x)}{M\left(1,\sqrt{1-x^2}\right)}\right)\right)^{-2},</math>which upon setting <math>x=1/\sqrt{2}</math> gives<math display="block">M(1,1/\sqrt{2})=\left(\sum_{n\in\mathbb{Z}}e^{-n^2\pi}\right)^{-2}.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Arithmetic–geometric mean
(section)
Add topic