Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Analytic function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Alternative characterizations== The following conditions are equivalent: #<math>f</math> is real analytic on an open set <math>D</math>. #There is a complex analytic extension of <math>f</math> to an open set <math>G \subset \mathbb{C}</math> which contains <math>D</math>. #<math>f</math> is smooth and for every [[compact set]] <math>K \subset D</math> there exists a constant <math>C</math> such that for every <math>x \in K</math> and every non-negative integer <math>k</math> the following bound holds{{sfn |Krantz |Parks |2002|p=15}} <math display="block"> \left| \frac{d^k f}{dx^k}(x) \right| \leq C^{k+1} k!</math> Complex analytic functions are exactly equivalent to [[Holomorphic function|holomorphic functions]], and are thus much more easily characterized. For the case of an analytic function with several variables (see below), the real analyticity can be characterized using the [[Fourier–Bros–Iagolnitzer transform]]. In the multivariable case, real analytic functions satisfy a direct generalization of the third characterization.<ref>{{Cite journal|last=Komatsu|first=Hikosaburo|date=1960|title=A characterization of real analytic functions|url=https://projecteuclid.org/euclid.pja/1195524081|journal=Proceedings of the Japan Academy|language=EN|volume=36|issue=3|pages=90–93|doi=10.3792/pja/1195524081|issn=0021-4280|doi-access=free}}</ref> Let <math>U \subset \R^n</math> be an open set, and let <math>f: U \to \R</math>. Then <math>f</math> is real analytic on <math>U</math> if and only if <math>f \in C^\infty(U)</math> and for every compact <math>K \subseteq U</math> there exists a constant <math>C</math> such that for every multi-index <math>\alpha \in \Z_{\geq 0}^n</math> the following bound holds<ref>{{Cite web|title=Gevrey class - Encyclopedia of Mathematics|url=https://encyclopediaofmath.org/wiki/Gevrey_class#References|access-date=2020-08-30|website=encyclopediaofmath.org}}</ref> <math display="block"> \sup_{x \in K} \left | \frac{\partial^\alpha f}{\partial x^\alpha}(x) \right | \leq C^{|\alpha|+1}\alpha!</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Analytic function
(section)
Add topic