Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Analytic continuation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Worked example== [[File:AnalyticContinuationGraphic.pdf|316px|right|thumb|Analytic continuation from ''U'' (centered at 1) to ''V'' (centered at a=(3+i)/2)]] Begin with a particular analytic function <math>f</math>. In this case, it is given by a [[power series]] centered at <math>z=1</math>: <math display="block">f(z) = \sum_{k=0}^\infty (-1)^k (z-1)^k.</math> By the [[Cauchy–Hadamard theorem]], its radius of convergence is 1. That is, <math>f</math> is defined and analytic on the open set <math>U = \{|z-1|<1\}</math> which has boundary <math>\partial U = \{|z-1|=1\}</math>. Indeed, the series diverges at <math>z=0 \in \partial U</math>. Pretend we don't know that <math>f(z)=1/z</math>, and focus on recentering the power series at a different point <math>a \in U</math>: <math display="block">f(z) = \sum_{k=0}^\infty a_k (z-a)^k.</math> We'll calculate the <math>a_k</math>'s and determine whether this new power series converges in an open set <math>V</math> which is not contained in <math>U</math>. If so, we will have analytically continued <math>f</math> to the region <math>U \cup V</math> which is strictly larger than <math>U</math>. The distance from <math>a</math> to <math>\partial U</math> is <math>\rho = 1 - |a-1| > 0</math>. Take <math>0 < r < \rho</math>; let <math>D</math> be the disk of radius <math>r</math> around <math>a</math>; and let <math>\partial D</math> be its boundary. Then <math>D \cup \partial D \subset U</math>. Using [[Cauchy's differentiation formula]] to calculate the new coefficients, one has <math display="block">\begin{align} a_k &= \frac{f^{(k)}(a)}{k!} \\ &=\frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta) d \zeta}{(\zeta -a)^{k+1}} \\ &=\frac{1}{2\pi i} \int_{\partial D} \frac{\sum_{n=0}^\infty (-1)^n (\zeta-1)^n d \zeta}{(\zeta -a)^{k+1}} \\ &=\frac{1}{2\pi i} \sum_{n=0}^\infty (-1)^n \int_{\partial D} \frac{(\zeta-1)^n d\zeta}{(\zeta -a)^{k+1}} \\ &=\frac{1}{2\pi i} \sum_{n=0}^\infty (-1)^n \int_0^{2\pi} \frac{(a+re^{i \theta}-1)^n rie^{i \theta}d\theta}{(re^{i \theta})^{k+1}} \\ &=\frac{1}{2\pi} \sum_{n=0}^\infty (-1)^n \int_0^{2\pi} \frac{(a-1+re^{i \theta})^n d\theta}{(re^{i \theta})^{k}} \\ &=\frac{1}{2\pi} \sum_{n=0}^\infty (-1)^n \int_0^{2\pi} \frac{\sum_{m=0}^n \binom{n}{m} (a-1)^{n-m} (re^{i \theta})^m d\theta}{(re^{i \theta})^{k}} \\ &=\frac{1}{2\pi} \sum_{n=0}^\infty (-1)^n \sum_{m=0}^n \binom{n}{m} (a-1)^{n-m} r^{m-k} \int_0^{2\pi} e^{i (m-k)\theta} d\theta \\ &=\frac{1}{2\pi} \sum_{n=k}^\infty (-1)^n \binom{n}{k} (a-1)^{n-k}\int_0^{2\pi} d\theta \\ &=\sum_{n=k}^\infty (-1)^n \binom{n}{k} (a-1)^{n-k} \\ &=(-1)^k \sum_{m=0}^\infty \binom{m+k}{k} (1-a)^m \\ &=(-1)^k a^{-k-1} \end{align}.</math> The last summation results from the {{mvar|k}}th derivation of the [[geometric series]], which gives the formula <math display = "block">\frac 1{(1-x)^{k+1}} = \sum_{m=0}^\infty \binom{m+k}k x^m.</math> Then, <math display = "block"> \begin{align} f(z) &= \sum_{k=0}^\infty a_k (z-a)^k \\ &= \sum_{k=0}^\infty (-1)^k a^{-k-1} (z-a)^k \\ &= \frac{1}{a} \sum_{k=0}^\infty \left ( 1 - \frac{z}{a} \right )^k \\ &= \frac{1}{a} \frac{1}{1 - \left(1 - \frac{z}{a}\right)} \\ &= \frac{1}{z} \\ &= \frac{1}{(z + a) - a} \end{align}</math> which has radius of convergence <math>|a|</math> around <math>0</math>. If we choose <math>a \in U</math> with <math>|a|>1</math>, then <math>V</math> is not a subset of <math>U</math> and is actually larger in area than <math>U</math>. The plot shows the result for <math>a = \tfrac{1}{2}(3+i).</math> We can continue the process: select <math>b \in U \cup V</math>, recenter the power series at <math>b</math>, and determine where the new power series converges. If the region contains points not in <math>U \cup V</math>, then we will have analytically continued <math>f</math> even further. This particular <math>f</math> can be analytically continued to the whole punctured complex plane <math>\Complex \setminus \{0\}.</math> In this particular case the obtained values of <math>f(-1)</math> are the same when the successive centers have a positive imaginary part or a negative imaginary part. This is not always the case; in particular this is not the case for the [[complex logarithm]], the [[antiderivative]] of the above function.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Analytic continuation
(section)
Add topic