Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Algae
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Evolution== ===Prokaryotic algae=== Prokaryotic algae, i.e., [[cyanobacteria]], are the only group of organisms where [[oxygenic photosynthesis]] has evolved. The oldest undisputed fossil evidence of cyanobacteria is dated at 2100 million years ago,<ref name="Schirrmeister-2013">{{cite journal | vauthors = Schirrmeister BE, de Vos JM, Antonelli A, Bagheri HC | title = Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 110 | issue = 5 | pages = 1791–1796 | date = January 2013 | pmid = 23319632 | pmc = 3562814 | doi = 10.1073/pnas.1209927110 | doi-access = free | bibcode = 2013PNAS..110.1791S }}</ref> although [[stromatolites]], associated with cyanobacterial [[biofilm]]s, appear as early as 3500 million years ago in the fossil record.<ref name="Baumgartner-2019">{{cite journal |last1=Baumgartner |first1=Raphael J. |last2=Van Kranendonk |first2=Martin J. |last3=Wacey |first3=David |last4=Fiorentini |first4=Marco L. |last5=Saunders |first5=Martin |last6=Caruso |first6=Stefano |last7=Pages |first7=Anais |last8=Homann |first8=Martin |last9=Guagliardo |first9=Paul |title=Nano−porous pyrite and organic matter in 3.5-billion-year-old stromatolites record primordial life |journal=Geology |date=November 2019 |volume=47 |issue=11 |pages=1039–1043 |doi=10.1130/G46365.1 |bibcode=2019Geo....47.1039B |url=https://archimer.ifremer.fr/doc/00637/74900/ }}</ref> ===Eukaryotic algae=== Eukaryotic algae are [[polyphyletic]] thus their origin cannot be traced back to single hypothetical [[common ancestor]]. It is thought that they came into existence when photosynthetic [[coccus|coccoid]] [[cyanobacteria]] got [[phagocytosis|phagocytized]] by a [[unicellular]] [[heterotrophic]] eukaryote (a [[protist]]),<ref name="Reyes-Prieto-2007">{{cite journal|last1=Reyes-Prieto|first1=Adrian|last2=Weber|first2=Andreas P.M.|last3=Bhattacharya|first3=Debashish|year=2007|title=The Origin and Establishment of the Plastid in Algae and Plants|url=https://www.annualreviews.org/doi/10.1146/annurev.genet.41.110306.130134|journal=[[Annual Review of Genetics]]|volume=41|issue=|pages=147–168 |doi=10.1146/annurev.genet.41.110306.130134|pmid=17600460|access-date=2023-12-03}}</ref> giving rise to double-membranous primary [[plastid]]s. Such [[symbiogenesis|symbiogenic]] events (primary symbiogenesis) are believed to have occurred more than 1.5 billion years ago during the [[Calymmian]] [[period (geology)|period]], early in [[Boring Billion]], but it is difficult to track the key events because of so much time gap.<ref name="Khan-2020a">{{cite journal|last1=Khan|first1=Amna Komal|last2=Kausar|first2=Humera|last3=Jaferi|first3=Syyada Samra|last4=Drouet|first4=Samantha|last5=Hano|first5=Christophe|last6=Abbasi|first6=Bilal Haider|last7=Anjum|first7=Sumaira|title=An Insight into the Algal Evolution and Genomics|journal=Biomolecules|date=2020-11-06|volume=10|issue=11|page=1524|doi=10.3390/biom10111524|pmid=33172219 |pmc=7694994 |doi-access=free }}</ref> Primary symbiogenesis gave rise to three divisions of [[archaeplastid]]s, namely the [[Viridiplantae]] ([[green algae]] and later [[plant]]s), [[Rhodophyta]] ([[red algae]]) and [[Glaucophyta]] ("grey algae"), whose plastids further spread into other protist lineages through eukaryote-eukaryote [[predation]], engulfments and subsequent endosymbioses (secondary and tertiary symbiogenesis).<ref name="Khan-2020a"/> This process of serial cell "capture" and "enslavement" explains the diversity of photosynthetic eukaryotes.<ref name="Reyes-Prieto-2007"/> The oldest undisputed fossil evidence of eukaryotic algae is ''[[Bangiomorpha pubescens]]'', a red alga found in rocks around 1047 million years old.<ref name="Butterfield-2000">{{cite journal |first=N. J. |last=Butterfield |year=2000 |title=''Bangiomorpha pubescens'' n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes |journal=[[Paleobiology (journal)|Paleobiology]] |volume=26 |issue=3 |pages=386–404 |url=http://paleobiol.geoscienceworld.org/cgi/content/abstract/26/3/386 |doi=10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2 |bibcode=2000Pbio...26..386B |s2cid=36648568 |issn=0094-8373 |url-status=live |archive-url=https://web.archive.org/web/20070307035241/http://paleobiol.geoscienceworld.org/cgi/content/abstract/26/3/386 |archive-date=7 March 2007}}</ref><ref name="Gibson-2018"> {{cite journal |author=T.M. Gibson |year=2018 |title=Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis |url=https://pubs.geoscienceworld.org/gsa/geology/article/46/2/135/524864/Precise-age-of-Bangiomorpha-pubescens-dates-the |journal=[[Geology (journal)|Geology]] |volume=46 |issue=2 |pages=135–138 |doi=10.1130/G39829.1 |bibcode=2018Geo....46..135G }}</ref> Recent [[genomic]] and [[phylogenomic]] approaches have significantly clarified plastid [[genome evolution]], the [[horizontal gene transfer|horizontal movement]] of [[endosymbiont]] [[genes]] to the "host" [[cell nucleus|nuclear]] [[genome]], and plastid spread throughout the eukaryotic [[tree of life (biology)|tree of life]].<ref name="Reyes-Prieto-2007"/> It is accepted that both [[euglenophyte]]s and [[chlorarachniophyte]]s obtained their chloroplasts from [[chlorophyte]]s that became endosymbionts.<ref name="Keeling-2017">{{cite book|last=Keeling|first=Patrick J.|title=Handbook of the Protists|chapter=Chlorarachniophytes|date=2017|isbn=978-3-319-28147-6|editor-last1=Archibald|editor-first1=John M.|editor-last2=Simpson|editor-first2=Alastair G.B.|editor-last3=Slamovits|editor-first3=Claudio H.|edition=2nd|publisher=Springer|doi=10.1007/978-3-319-28149-0_34|chapter-url=http://link.springer.com/10.1007/978-3-319-28149-0_34|volume=1|pages=765–781}}</ref> In particular, euglenophyte chloroplasts share the most resemblance with the genus ''[[Pyramimonas]]''.<ref name="Bicudo-2016">{{cite journal|last=Bicudo|first=Carlos E. de M.|last2=Menezes|first2=Mariângela|title=Phylogeny and Classification of Euglenophyceae: A Brief Review|journal=Frontiers in Ecology and Evolution|volume=4|date=16 March 2016|issn=2296-701X|doi=10.3389/fevo.2016.00017|doi-access=free|page=}}</ref> However, there is still no clear order in which the secondary and tertiary endosymbioses ("serial" endosymbioses) occurred for the "[[chromist]]" lineages ([[ochrophyte]]s, [[cryptophyte]]s, [[haptophyte]]s and [[myzozoa]]ns). Two main models have been proposed to explain the order, both of which agree that cryptophytes obtained their chloroplasts from [[red algae]]. One model, hypothesized in 2014 by John W. Stiller and coauthors,<ref name="Stiller-2014">{{cite journal|last=Stiller|first=John W.|last2=Schreiber|first2=John|last3=Yue|first3=Jipei|last4=Guo|first4=Hui|last5=Ding|first5=Qin|last6=Huang|first6=Jinling|title=The evolution of photosynthesis in chromist algae through serial endosymbioses|journal=Nature Communications|volume=5|issue=1|date=10 December 2014|issn=2041-1723|pmid=25493338|pmc=4284659|doi=10.1038/ncomms6764|doi-access=free|url=https://www.nature.com/articles/ncomms6764.pdf|access-date=13 May 2025|pages=5764}}</ref> suggests that a cryptophyte became the plastid of ochrophytes, which in turn became the plastid of myzozoans and haptophytes. The other model, suggested by Andrzej Bodył and coauthors in 2009,<ref name="Bodył-2009">{{cite journal|last=Bodył|first=Andrzej|last2=Stiller|first2=John W.|last3=Mackiewicz|first3=Paweł|title=Chromalveolate plastids: direct descent or multiple endosymbioses?|journal=Trends in Ecology & Evolution|volume=24|issue=3|date=2009|doi=10.1016/j.tree.2008.11.003|pages=119–121|url=https://linkinghub.elsevier.com/retrieve/pii/S0169534709000251|access-date=13 May 2025}}</ref> describes that a cryptophyte became the plastid of both haptophytes and ochrophytes, and it is a haptophyte that became the plastid of myzozoans instead.<ref name="Strassert-2021">{{cite journal|last=Strassert|first=Jürgen F. H.|last2=Irisarri|first2=Iker|last3=Williams|first3=Tom A.|last4=Burki|first4=Fabien|title=A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids|journal=Nature Communications|volume=12|issue=1|date=25 March 2021|issn=2041-1723|pmid=33767194|pmc=7994803|doi=10.1038/s41467-021-22044-z|doi-access=free|url=https://www.nature.com/articles/s41467-021-22044-z.pdf|access-date=13 May 2025|page=}}</ref> The following [[cladogram]] is a summary of the occurrence of algae across the tree of life, and the evolutionary relationships of each ancestrally photosynthetic group (shown in bold).<ref name="Strassert-2021"/><ref name="Eliáš-2021">{{cite journal|last=Eliáš|first=Marek|title=Protist diversity: Novel groups enrich the algal tree of life|journal=Current Biology|volume=31|issue=11|date=2021|doi=10.1016/j.cub.2021.04.025|doi-access=free|pages=R733–R735|url=https://www.cell.com/article/S0960982221005388/pdf|access-date=13 May 2025}}</ref> {{clade|style=font-size:90%;line-height:80%;|1={{clade |label1=[[Bacteria]]|1='''[[Cyanobacteria]]''' |label2=[[Eukaryote]]s|2={{clade |1={{clade |label1=[[Diaphoretickes]]|1={{clade |1={{clade |1={{clade|label1='''[[Archaeplastida]]'''|sublabel1=''primary endosymbiosis''|1={{clade |1={{clade |1={{clade|label1='''[[Viridiplantae]]'''|1={{clade |1='''[[Prasinodermophyta]]''' |2={{clade |1='''[[Chlorophyta]]''' |2='''[[Streptophyta]]''' (includes [[plant]]s) }} }}}} |2='''[[Glaucophyta]]''' }} |2={{clade |1={{clade |1='''[[Rhodophyta]]''' |2=[[Rhodelphidia]] }} |2=[[Picozoa]] }} }}}} |2=[[Cryptista]] (includes '''[[Cryptophyta]]''') }} |2=[[Haptista]] (includes '''[[Haptophyta]]''') |3={{clade |1=[[Telonemia]] |label2=[[SAR supergroup|SAR]]|2={{clade |1=[[Stramenopiles]] (includes '''[[Ochrophyta]]''') |2=[[Alveolata]] (includes '''[[Myzozoa]]''') |3=[[Rhizaria]] (includes '''[[Chlorarachniophyta]]''') }} }} }} |label2=[[Discoba]]|2=[[Euglenozoa]] (includes '''[[Euglenophyta]]''') }} |2=Other eukaryotes }} }} }} ===Relationship to land plants=== Fossils of isolated [[spore]]s suggest [[land plant]]s may have been around as long as 475 [[million years ago]] (mya) during the [[Late Cambrian]]/[[Early Ordovician]] period,<ref>{{cite news |title=When plants conquered land |first=Ivan |last=Noble |date=18 September 2003 |url= http://news.bbc.co.uk/1/hi/sci/tech/3117034.stm |publisher=BBC |url-status=live |archive-url= https://web.archive.org/web/20061111170428/http://news.bbc.co.uk/1/hi/sci/tech/3117034.stm |archive-date=11 November 2006}}</ref><ref>{{cite journal |last1=Wellman |first1=C. H. |last2=Osterloff |first2=P. L. |last3=Mohiuddin |first3=U. |year=2003 |title=Fragments of the earliest land plants |journal=Nature |volume=425 |issue=6955 |pages=282–285 |doi=10.1038/nature01884 |pmid=13679913 |bibcode=2003Natur.425..282W |s2cid=4383813 |url= http://eprints.whiterose.ac.uk/106/ |url-status=live |archive-url= https://web.archive.org/web/20170830194441/http://eprints.whiterose.ac.uk/106/ |archive-date=30 August 2017}}</ref> from [[sessility (motility)|sessile]] shallow [[freshwater]] [[charophyte]] algae much like ''[[Chara (alga)|Chara]]'',<ref name="Kenrick-1997">{{cite book |last1=Kenrick |first1=P. |last2=Crane |first2=P.R. |title=The origin and early diversification of land plants. A cladistic study |isbn=978-1-56098-729-1 |year=1997 |publisher=Smithsonian Institution Press |location=Washington}}</ref> which likely got stranded ashore when [[riverine]]/[[lacustrine]] [[water level]]s dropped during [[dry season]]s.<ref name="Raven-2001">{{cite journal |author=Raven, J.A. |author2=Edwards, D. |year=2001 |title=Roots: evolutionary origins and biogeochemical significance |journal=Journal of Experimental Botany |volume=52 |issue=90001 |pages=381–401 |doi=10.1093/jexbot/52.suppl_1.381 |pmid=11326045 |doi-access=free}}</ref> These charophyte algae probably already developed filamentous [[thalli]] and [[holdfast (biology)|holdfast]]s that superficially resembled [[plant stem]]s and [[root]]s, and probably had an isomorphic [[alternation of generations]]. They perhaps evolved some 850 mya<ref name="Knauth-2009">{{cite journal |first1=L. Paul |last1=Knauth |first2=Martin J. |last2=Kennedy |date=2009 |title=The late Precambrian greening of the Earth |journal=Nature |volume=460 |issue=7256 |pages=728–732 |doi=10.1038/nature08213 |pmid=19587681 |bibcode=2009Natur.460..728K |s2cid=4398942 }}</ref> and might even be as early as 1 [[Gya (unit)|Gya]] during the late phase of the [[Boring Billion]].<ref name="Strother-2011">{{cite journal |first1=Paul K. |last1=Strother |first2=Leila |last2=Battison |first3= Martin D. |last3=Brasier |first4=Charles H. |last4=Wellman |date=2011 |title=Earth's earliest non-marine eukaryotes |journal=Nature |volume=473 |issue=7348 |pages=505–509 |doi=10.1038/nature09943 |pmid=21490597 |bibcode=2011Natur.473..505S |s2cid=4418860 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Algae
(section)
Add topic