Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Wheat
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== For disease resistance === [[File:Stem rust on differential lines wheat.jpg|thumb|Different strains have been infected with the [[stem rust|stem rust fungus]]. The strains bred to be resistant have their leaves unaffected or relatively unaffected by the fungus.]] Wild grasses in the genus ''Triticum'' and related genera, and grasses such as [[rye]] have been a source of many disease-resistance traits for cultivated wheat [[Transgenic plant|breeding]] since the 1930s.<ref>{{cite journal |last1=Hoisington |first1=D. |last2=Khairallah |first2=M. |last3=Reeves |first3=T. |last4=Ribaut |first4=J.M. |last5=Skovmand |first5=B. |last6=Taba |first6=S. |last7=Warburton |first7=M. |display-authors=3 |year=1999 |title=Plant genetic resources: What can they contribute toward increased crop productivity? |journal=[[Proceedings of the National Academy of Sciences]]|volume=96 |issue=11 |pages=5937–43 |pmid=10339521 |doi=10.1073/pnas.96.11.5937 |pmc=34209|bibcode=1999PNAS...96.5937H |doi-access=free }}</ref> Some [[plant disease resistance|resistance gene]]s have been identified against ''[[Pyrenophora tritici-repentis]]'', especially races 1 and 5, those most problematic in [[Kazakhstan]].<ref name="Dahm-2021">{{cite web |first1=Madeline |last1=Dahm |title=Genome-wide association study puts tan spot-resistant genes in the spotlight |website=[[WHEAT (CGIAR)|WHEAT]] |date=27 July 2021 |url=http://wheat.org/genome-wide-association-study-puts-tan-spot-resistant-genes-in-the-spotlight/ |access-date=28 July 2021 |archive-date=22 September 2021 |archive-url=https://web.archive.org/web/20210922142934/https://wheat.org/genome-wide-association-study-puts-tan-spot-resistant-genes-in-the-spotlight/ |url-status=dead }}</ref> [[crop wild relative|Wild relative]], ''[[Aegilops tauschii]]'' is the source of several genes effective against [[TTKSK]]/Ug99 - ''[[Sr33 (gene)|Sr33]]'', ''Sr45'', ''Sr46'', and ''SrTA1662'' - of which ''Sr33'' and ''SrTA1662'' are the work of Olson ''et al.'', 2013, and ''Sr45'' and ''Sr46'' are also briefly reviewed therein.<ref name="Bohra-2021">{{cite journal |last1=Bohra |first1=Abhishek |last2=Kilian |first2=Benjamin |last3=Sivasankar |first3=Shoba |last4=Caccamo |first4=Mario |last5=Mba |first5=Chikelu |last6=McCouch |first6=Susan R. |last7=Varshney |first7=Rajeev K. |title=Reap the crop wild relatives for breeding future crops |journal=[[Trends in Biotechnology]] |publisher=[[Cell Press]] |year=2021 |volume=40 |issue=4 |doi=10.1016/j.tibtech.2021.08.009 |pages=412–431|pmid=34629170 |s2cid=238580339 |doi-access=free }}</ref> *''{{visible anchor|Lr67}}'' is an [[R gene]], a [[dominant negative]] for [[partial adult plant resistance|partial adult resistance]] discovered and molecularly characterized by Moore ''et al.'', 2015. {{As of|2018}} ''Lr67'' is effective against all races of [[wheat leaf rust|leaf]], [[wheat stripe rust|stripe]], and [[wheat stem rust|stem]] rusts, and [[wheat powdery mildew|powdery mildew]] (''Blumeria graminis''). This is produced by a [[mutation]] of two [[amino acid]]s in what is [[gene prediction|predicted to be]] a [[hexose transporter]]. The product then [[heterodimerization|heterodimerizes]] with the [[plant susceptibility allele|susceptible's]] product, with the downstream result of reducing [[glucose]] uptake.<ref name="Kourelis-2018">{{cite journal |last1=Kourelis |first1=Jiorgos |last2=van der Hoorn |first2=Renier A.L. |title=Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function |journal=[[The Plant Cell]] |publisher=[[American Society of Plant Biologists]] ([[Oxford University Press|OUP]]) |volume=30 |issue=2 |date=2018-01-30 |doi=10.1105/tpc.17.00579 |pages=285–299|pmid=29382771 |pmc=5868693 |bibcode=2018PlanC..30..285K }}</ref> *''{{visible anchor|Lr34}}'' is widely deployed in cultivars due to its abnormally broad effectiveness, conferring resistance against [[wheat leaf rust|leaf-]] and [[wheat stripe rust|stripe-]]rusts, and [[wheat powdery mildew|powdery mildew]].<ref name="Dodds-2010">{{cite journal |last1=Dodds |first1=Peter N. |last2=Rathjen |first2=John P. |title=Plant immunity: towards an integrated view of plant–pathogen interactions |journal=[[Nature Reviews Genetics]] |publisher=[[Nature Portfolio]] |volume=11 |issue=8 |date=2010-06-29 |doi=10.1038/nrg2812 |pages=539–548|pmid=20585331 |hdl=1885/29324 |s2cid=8989912 |hdl-access=free }}</ref> An important quantitative resistance gene, Lr34, has been isolated and used intensively in wheat cultivation worldwide; it provides a novel resistance mechanism.<ref name="Krattinger-2009">{{cite journal |last1=Krattinger |first1=Simon G. |last2=Lagudah |first2=Evans S. |last3=Spielmeyer |first3=Wolfgang |last4=Singh |first4=Ravi P. |last5=Huerta-Espino |first5=Julio |last6=McFadden |first6=Helen |last7=Bossolini |first7=Eligio |last8=Selter |first8=Liselotte L. |last9=Keller |first9=Beat |display-authors=6 |title=A Putative ABC Transporter Confers Durable Resistance to Multiple Fungal Pathogens in Wheat |journal=Science |volume=323 |issue=5919 |date=2009-03-06 |issn=0036-8075 |doi=10.1126/science.1166453 |pages=1360–1363|pmid=19229000 |bibcode=2009Sci...323.1360K }}</ref><ref name="Krattinger-2019">{{cite journal |last1=Krattinger |first1=Simon G. |last2=Kang |first2=Joohyun |last3=Bräunlich |first3=Stephanie |last4=Boni |first4=Rainer |last5=Chauhan |first5=Harsh |last6=Selter |first6=Liselotte L. |last7=Robinson |first7=Mark D. |last8=Schmid |first8=Marc W. |last9=Wiederhold |first9=Elena |last10=Hensel |first10=Goetz |last11=Kumlehn |first11=Jochen |last12=Sucher |first12=Justine |last13=Martinoia |first13=Enrico |last14=Keller |first14=Beat |display-authors=6 |title=Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34 |journal=New Phytologist |volume=223 |issue=2 |date=2019 |issn=0028-646X |pmid=30913300 |pmc=6618152 |doi=10.1111/nph.15815 |pages=853–866|bibcode=2019NewPh.223..853K }}</ref> Krattinger et al. 2009 find ''Lr34'' to be an [[ATP-binding cassette transporter|ABC transporter]], and conclude that this is the probable reason for its effectiveness<ref name="Dodds-2010" /><ref name="Furbank-2011">{{cite journal |last1=Furbank |first1=Robert T. |last2=Tester |first2=Mark |title=Phenomics – technologies to relieve the phenotyping bottleneck |journal=[[Trends in Plant Science]] |publisher=[[Cell Press]] |volume=16 |issue=12 |year=2011 |doi=10.1016/j.tplants.2011.09.005 |pages=635–644|pmid=22074787 |bibcode=2011TPS....16..635F }}</ref> and the reason that it produces a 'slow rusting'/[[adult plant resistance|adult resistance]] phenotype.<ref name="Furbank-2011" /> * ''{{ Visible anchor |Pm8 }}'' is a widely used [[wheat powdery mildew|powdery mildew]] resistance [[introgressed]] from [[rye]] (''[[Secale cereale]]'').<ref name="Herrera-2017" /> It comes from the rye [[1R (chromosome)|1R chromosome]], a source of many resistances since the 1960s.<ref name="Herrera-2017">{{cite journal |pages=1–9 |year=2017 |issue=1 |volume=154 |publisher=[[BioMed Central]] |journal=[[Hereditas]] |first3=Inger |first2=Larisa |first1=Leonardo |last3=Åhman |last2=Gustavsson |last1=Herrera |doi=10.1186/s41065-017-0033-5 |title=A systematic review of rye (''Secale cereale'' L.) as a source of resistance to pathogens and pests in wheat (''Triticum aestivum'' L.)|pmid=28559761 |pmc=5445327 |doi-access=free }}</ref> {{visible anchor|Fusarium head blight resistance|text=[[Fusarium head blight resistance|Resistance to Fusarium head blight]]}} (FHB, Fusarium ear blight) is also an important breeding target. [[Marker-assisted breeding]] panels involving [[kompetitive allele specific PCR]] can be used. Singh et al. 2019 identify a KASP [[genetic marker]] for a [[pore-forming toxin]]-like gene providing FHB resistance.<ref name="Kaur-2020">{{cite journal |last1=Kaur |first1=Bhavjot |last2=Mavi |first2=G. S. |last3=Gill |first3=Manpartik S. |last4=Saini |first4=Dinesh Kumar |title=Utilization of KASP technology for wheat improvement |journal=Cereal Research Communications |publisher=Springer Science+Business Media |volume=48 |issue=4 |date=2020-07-02 |doi=10.1007/s42976-020-00057-6 |pages=409–421 |s2cid=225570977}}</ref> In 2003 the first resistance genes against fungal diseases in wheat were isolated.<ref name="Feuillet-2003">{{cite journal |last1=Feuillet |first1=Catherine |last2=Travella |first2=Silvia |last3=Stein |first3=Nils |last4=Albar |first4=Laurence |last5=Nublat |first5=Aurélie |last6=Keller |first6=Beat |title=Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat ( Triticum aestivum L.) genome |journal=Proceedings of the National Academy of Sciences |volume=100 |issue=25 |date=2003-12-09 |issn=0027-8424 |pmid=14645721 |pmc=299976 |doi=10.1073/pnas.2435133100 |pages=15253–15258|doi-access=free |bibcode=2003PNAS..10015253F }}</ref><ref name="Yahiaoui-2004">{{cite journal |last1=Yahiaoui |first1=Nabila |last2=Srichumpa |first2=Payorm |last3=Dudler |first3=Robert |last4=Keller |first4=Beat |title=Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat |journal=The Plant Journal |volume=37 |issue=4 |date=2004 |issn=0960-7412 |doi=10.1046/j.1365-313X.2003.01977.x |pages=528–538|pmid=14756761 }}</ref> In 2021, novel resistance genes were identified in wheat against [[powdery mildew]] and [[wheat leaf rust]].<ref name="Sánchez-Martín-2021">{{cite journal |last1=Sánchez-Martín |first1=Javier |last2=Widrig |first2=Victoria |last3=Herren |first3=Gerhard |last4=Wicker |first4=Thomas |last5=Zbinden |first5=Helen |last6=Gronnier |first6=Julien |last7=Spörri |first7=Laurin |last8=Praz |first8=Coraline R. |last9=Heuberger |first9=Matthias |last10=Kolodziej |first10=Markus C. |last11=Isaksson |first11=Jonatan |last12=Steuernagel |first12=Burkhard |last13=Karafiátová |first13=Miroslava |last14=Doležel |first14=Jaroslav |last15=Zipfel |first15=Cyril |last16=Keller |first16=Beat |display-authors=6 |title=Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins |journal=Nature Plants |volume=7 |issue=3 |date=2021-03-11 |issn=2055-0278 |pmid=33707738 |pmc=7610370 |doi=10.1038/s41477-021-00869-2 |pages=327–341|bibcode=2021NatPl...7..327S }}</ref><ref name="Kolodziej-2021">{{cite journal |last1=Kolodziej |first1=Markus C. |last2=Singla |first2=Jyoti |last3=Sánchez-Martín |first3=Javier |last4=Zbinden |first4=Helen |last5=Šimková |first5=Hana |last6=Karafiátová |first6=Miroslava |last7=Doležel |first7=Jaroslav |last8=Gronnier |first8=Julien |last9=Poretti |first9=Manuel |last10=Glauser |first10=Gaétan |last11=Zhu |first11=Wangsheng |last12=Köster |first12=Philipp |last13=Zipfel |first13=Cyril |last14=Wicker |first14=Thomas |last15=Krattinger |first15=Simon G. |last16=Keller |first16=Beat |display-authors=6 |title=A membrane-bound ankyrin repeat protein confers race-specific leaf rust disease resistance in wheat |journal=Nature Communications |volume=12 |issue=1 |date=2021-02-11 |page=956 |issn=2041-1723 |pmid=33574268 |pmc=7878491 |doi=10.1038/s41467-020-20777-x|bibcode=2021NatCo..12..956K }}</ref> Modified resistance genes have been tested in transgenic wheat and barley plants.<ref name="Koller-2023">{{Cite journal |last1=Koller |first1=Teresa |last2=Camenzind |first2=Marcela |last3=Jung |first3=Esther |last4=Brunner |first4=Susanne |last5=Herren |first5=Gerhard |last6=Armbruster |first6=Cygni |last7=Keller |first7=Beat |display-authors=6 |date=2023-12-10 |title=Pyramiding of transgenic immune receptors from primary and tertiary wheat gene pools improves powdery mildew resistance in the field |journal=Journal of Experimental Botany |volume=75 |issue=7 |pages=1872–1886 |doi=10.1093/jxb/erad493 |issn=0022-0957 |doi-access=free|pmid=38071644 |pmc=10967238 }}</ref> <!-- This section is now already more complex and technical than the rest of the article; we should not add anything more (danger of [[WP:COATRACK]], if we haven't already crossed that threshold), but should create a subsidiary article, [[Resistance genes in wheat]], and place a "{{main|Resistance genes in wheat}}" link here, with a short non-technical summary of that article here. -->
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Wheat
(section)
Add topic