Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Stochastic process
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Skorokhod space==== {{Main|Skorokhod space}} A '''Skorokhod space''', also written as '''Skorohod space''', is a mathematical space of all the functions that are right-continuous with left limits, defined on some interval of the real line such as <math>[0,1]</math> or <math>[0,\infty)</math>, and take values on the real line or on some metric space.<ref name="Whitt2006page78">{{cite book|author=Ward Whitt|title=Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues|url=https://books.google.com/books?id=LkQOBwAAQBAJ&pg=PR5|year=2006|publisher=Springer Science & Business Media|isbn=978-0-387-21748-2|pages=78–79}}</ref><ref name="GusakKukush2010page24">{{harvtxt|Gusak|Kukush|Kulik|Mishura|2010}}, p. 24</ref><ref name="Bogachev2007Vol2page53">{{cite book|author=Vladimir I. Bogachev|title=Measure Theory (Volume 2)|url=https://books.google.com/books?id=CoSIe7h5mTsC|year=2007|publisher=Springer Science & Business Media|isbn=978-3-540-34514-5|page=53}}</ref> Such functions are known as càdlàg or cadlag functions, based on the acronym of the French phrase ''continue à droite, limite à gauche''.<ref name="Whitt2006page78"/><ref name="Klebaner2005page4">{{cite book|author=Fima C. Klebaner|title=Introduction to Stochastic Calculus with Applications|url=https://books.google.com/books?id=JYzW0uqQxB0C|year=2005|publisher=Imperial College Press|isbn=978-1-86094-555-7|page=4}}</ref> A Skorokhod function space, introduced by [[Anatoliy Skorokhod]],<ref name="Bogachev2007Vol2page53"/> is often denoted with the letter <math>D</math>,<ref name="Whitt2006page78"/><ref name="GusakKukush2010page24"/><ref name="Bogachev2007Vol2page53"/><ref name="Klebaner2005page4"/> so the function space is also referred to as space <math>D</math>.<ref name="Whitt2006page78"/><ref name="Asmussen2003page420">{{cite book|author=Søren Asmussen|title=Applied Probability and Queues|url=https://books.google.com/books?id=BeYaTxesKy0C|year=2003|publisher=Springer Science & Business Media|isbn=978-0-387-00211-8|page=420}}</ref><ref name="Billingsley2013page121">{{cite book|author=Patrick Billingsley|title=Convergence of Probability Measures|url=https://books.google.com/books?id=6ItqtwaWZZQC|year=2013|publisher=John Wiley & Sons|isbn=978-1-118-62596-5|page=121}}</ref> The notation of this function space can also include the interval on which all the càdlàg functions are defined, so, for example, <math>D[0,1]</math> denotes the space of càdlàg functions defined on the [[unit interval]] <math>[0,1]</math>.<ref name="Klebaner2005page4"/><ref name="Billingsley2013page121"/><ref name="Bass2011page34">{{cite book|author=Richard F. Bass|title=Stochastic Processes|url=https://books.google.com/books?id=Ll0T7PIkcKMC|year=2011|publisher=Cambridge University Press|isbn=978-1-139-50147-7|page=34}}</ref> Skorokhod function spaces are frequently used in the theory of stochastic processes because it often assumed that the sample functions of continuous-time stochastic processes belong to a Skorokhod space.<ref name="Bogachev2007Vol2page53"/><ref name="Asmussen2003page420"/> Such spaces contain continuous functions, which correspond to sample functions of the Wiener process. But the space also has functions with discontinuities, which means that the sample functions of stochastic processes with jumps, such as the Poisson process (on the real line), are also members of this space.<ref name="Billingsley2013page121"/><ref name="BinghamKiesel2013page154">{{cite book|author1=Nicholas H. Bingham|author2=Rüdiger Kiesel|title=Risk-Neutral Valuation: Pricing and Hedging of Financial Derivatives|url=https://books.google.com/books?id=AOIlBQAAQBAJ|year=2013|publisher=Springer Science & Business Media|isbn=978-1-4471-3856-3|page=154}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Stochastic process
(section)
Add topic