Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Pythagorean triple
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Pythagorean {{math|''n''}}-tuple=== {{see also|Pythagorean quadruple}} The expression :<math>\left(m_1^2 - m_2^2 - \ldots - m_n^2\right)^2 + \sum_{k=2}^n (2 m_1 m_k)^2 = \left(m_1^2 + \ldots + m_n^2\right)^2</math> is a Pythagorean {{mvar|n}}-tuple for any tuple of positive integers {{math|(''m''{{sub|1}}, ..., ''m''{{sub|''n''}})}} with {{math|''m''{{supsub|2|1}} > ''m''{{supsub|2|2}} + ... + ''m''{{supsub|2|''n''}}}}. The Pythagorean {{mvar|n}}-tuple can be made primitive by dividing out by the largest common divisor of its values. Furthermore, any primitive Pythagorean {{mvar|n}}-tuple {{math|1=''a''{{supsub|2|1}} + ... + ''a''{{supsub|2|''n''}} = ''c''{{sup|2}}}} can be found by this approach. Use {{math|1=(''m''{{sub|1}}, ..., ''m''{{sub|''n''}}) = (''c'' + ''a''{{sub|1}}, ''a''{{sub|2}}, ..., ''a''{{sub|''n''}})}} to get a Pythagorean {{mvar|n}}-tuple by the above formula and divide out by the largest common integer divisor, which is {{math|1=2''m''{{sub|1}} = 2(''c'' + ''a''{{sub|1}})}}. Dividing out by the largest common divisor of these {{math|1=(''m''{{sub|1}}, ..., ''m''{{sub|''n''}})}} values gives the same primitive Pythagorean {{mvar|n}}-tuple; and there is a one-to-one correspondence between tuples of [[setwise coprime]] positive integers {{math|1=(''m''{{sub|1}}, ..., ''m''{{sub|''n''}})}} satisfying {{math|''m''{{supsub|2|1}} > ''m''{{supsub|2|2}} + ... + ''m''{{supsub|2|''n''}}}} and primitive Pythagorean {{mvar|n}}-tuples. Examples of the relationship between setwise coprime values <math>\vec{m}</math> and primitive Pythagorean {{mvar|n}}-tuples include:<ref>{{Cite OEIS|A351061|Smallest positive integer whose square can be written as the sum of n positive perfect squares|mode=cs2}}</ref> :<math>\begin{align} \vec{m} = (1) & \leftrightarrow 1^2 = 1^2 \\ \vec{m} = (2, 1) & \leftrightarrow 3^2 + 4^2 = 5^2 \\ \vec{m} = (2, 1, 1) & \leftrightarrow 1^2 + 2^2 + 2^2 = 3^2 \\ \vec{m} = (3, 1, 1, 1) & \leftrightarrow 1^2 + 1^2 + 1^2 + 1^2 = 2^2 \\ \vec{m} = (5, 1, 1, 2, 3) & \leftrightarrow 1^2 + 1^2 + 1^2 + 2^2 + 3^2 = 4^2 \\ \vec{m} = (4, 1, 1, 1, 1, 2) & \leftrightarrow 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 = 3^2 \\ \vec{m} = (5, 1, 1, 1, 2, 2, 2) & \leftrightarrow 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 = 4^2 \end{align}</math> ====Consecutive squares==== Since the sum {{math|''F''(''k'',''m'')}} of {{math|''k''}} consecutive squares beginning with {{math|''m''{{sup|2}}}} is given by the formula,<ref>{{citation|url= http://www.math.niu.edu/~rusin/known-math/97/cube.sum|title= Sum of consecutive cubes equal a cube|url-status= dead|archive-url= https://web.archive.org/web/20080515132209/http://www.math.niu.edu/~rusin/known-math/97/cube.sum|archive-date= 2008-05-15}}</ref> :<math>F(k,m)=km(k-1+m)+\frac{k(k-1)(2k-1)}{6}</math> one may find values {{math|(''k'', ''m'')}} so that {{math|''F''(''k'',''m'')}} is a square, such as one by Hirschhorn where the number of terms is itself a square,<ref>{{citation |last=Hirschhorn |first=Michael |title=When is the sum of consecutive squares a square? |journal=The Mathematical Gazette |volume=95 |pages=511β2 |date=November 2011 |doi=10.1017/S0025557200003636 |s2cid=118776198 |oclc=819659848 |issn=0025-5572|doi-access=free }}</ref> :<math>m=\tfrac{v^4-24v^2-25}{48},\; k=v^2,\; F(m,k)=\tfrac{v^5+47v}{48}</math> and {{math|''v'' β₯ 5}} is any integer not divisible by 2 or 3. For the smallest case {{math|1=''v'' = 5}}, hence {{math|1=''k'' = 25}}, this yields the well-known cannonball-stacking problem of [[Γdouard Lucas|Lucas]], :<math>0^2+1^2+2^2+\dots+24^2 = 70^2</math> a fact which is connected to the [[Leech lattice#Using the Lorentzian lattice II25,1|Leech lattice]]. In addition, if in a Pythagorean {{math|''n''}}-tuple ({{math|''n'' β₯ 4}}) all [[addend]]s are consecutive except one, one can use the equation,<ref>{{citation |last=Goehl |first=John F. Jr. |title=Reader reflections |journal=Mathematics Teacher |volume=98 |issue=9 |page=580 |date=May 2005 |doi=10.5951/MT.98.9.0580 |url=http://www.nctm.org/publications/article.aspx?id=18884}}</ref> :<math>F(k,m) + p^{2} = (p+1)^{2}</math> Since the second power of {{math|''p''}} cancels out, this is only linear and easily solved for as <math>p=\tfrac{F(k,m)-1}{2}</math> though {{math|''k''}}, {{math|''m''}} should be chosen so that {{math|''p''}} is an integer, with a small example being {{math|1=''k'' = 5}}, {{math|1=''m'' = 1}} yielding, :<math>1^2+2^2+3^2+4^2+5^2+27^2=28^2</math> Thus, one way of generating Pythagorean {{math|''n''}}-tuples is by using, for various {{math|''x''}},<ref>Goehl, John F., Jr., "Triples, quartets, pentads", ''Mathematics Teacher'' 98, May 2005, p. 580.</ref> :<math>x^2+(x+1)^2+\cdots +(x+q)^2+p^2=(p+1)^2,</math> where ''q = n''β2 and where :<math>p=\frac{(q+1)x^2+q(q+1)x+\frac{q(q+1)(2q+1)}{6} -1}{2}.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Pythagorean triple
(section)
Add topic