Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Definite matrix
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Further properties === # If <math>M</math> is a symmetric [[Toeplitz matrix]], i.e. the entries <math>m_{ij}</math> are given as a function of their absolute index differences: <math>m_{ij} = h(|i-j|),</math> and the ''strict'' inequality <math display="inline">\sum_{j \neq 0} \left|h(j)\right| < h(0)</math> holds, then <math>M</math> is ''strictly'' positive definite. # Let <math>M > 0</math> and <math>N</math> Hermitian. If <math>MN + NM \ge 0</math> (resp., <math>MN + NM > 0</math>) then <math>N \ge 0</math> (resp., <math>N > 0</math>).<ref> {{Cite book | title=Positive Definite Matrices | last=Bhatia | first=Rajendra | publisher=Princeton University Press | year=2007 | isbn=978-0-691-12918-1 | location=Princeton, New Jersey | pages=8 }}</ref> # If <math>M > 0</math> is real, then there is a <math>\delta > 0</math> such that <math>M > \delta I,</math> where <math>I</math> is the [[identity matrix]]. # If <math>M_k</math> denotes the leading <math>k \times k</math> minor, <math>\det\left(M_k\right)/\det\left(M_{k-1}\right)</math> is the {{mvar|k}}th pivot during [[LU decomposition]]. # A matrix is negative definite if its {{mvar|k}}th order leading [[principal minor]] is negative when <math>k</math> is odd, and positive when <math>k</math> is even. # If <math>M</math> is a real positive definite matrix, then there exists a positive real number <math>m</math> such that for every vector <math>\mathbf{v},</math> <math>\mathbf{v}^\mathsf{T} M\mathbf{v} \geq m\|\mathbf{v}\|_2^{2}.</math> # A Hermitian matrix is positive semidefinite if and only if all of its principal minors are nonnegative. It is however not enough to consider the leading principal minors only, as is checked on the diagonal matrix with entries {{math|0}} and {{math|β1 .}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Definite matrix
(section)
Add topic