Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
CT scan
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Multiplanar reconstruction and projections{{anchor|Multiplanar_reconstruction}} ==== [[File:Ct-workstation-neck.jpg|thumb|Typical screen layout for diagnostic software, showing one volume rendering (VR) and multiplanar view of three thin slices in the [[axial plane|axial]] (upper right), [[sagittal plane|sagittal]] (lower left), and [[coronal plane]]s (lower right)]] [[File:CT of spondylosis causing radiculopathy.png|thumb|left|Special planes are sometimes useful, such as this oblique longitudinal plane in order to visualize the neuroforamina of the vertebral column, showing narrowing at two levels, causing [[radiculopathy]]. The smaller images are axial plane slices.|148x148px]] Multiplanar reconstruction (MPR) is the process of converting data from one [[anatomical plane]] (usually [[Transverse plane|transverse]]) to other planes. It can be used for thin slices as well as projections. Multiplanar reconstruction is possible as present CT scanners provide almost [[isotropy|isotropic]] resolution.<ref name="ref3">{{Cite book |last1=Udupa |first1=Jayaram K. |url=https://books.google.com/books?id=aR6PHYluq4oC&q=3D+Imaging+in+Medicine%2C+2nd+Edition |title=3D Imaging in Medicine, Second Edition |last2=Herman |first2=Gabor T. |date=1999-09-28 |publisher=CRC Press |isbn=978-0-8493-3179-4}}</ref> MPR is used almost in every scan. The spine is frequently examined with it.<ref>{{Cite journal |last1=Krupski |first1=Witold |last2=Kurys-Denis |first2=Ewa |last3=Matuszewski |first3=Łukasz |last4=Plezia |first4=Bogusław |date=2007-06-30 |title=Use of multi-planar reconstruction (MPR) and 3-dimentional [sic] (3D) CT to assess stability criteria in C2 vertebral fractures |url=http://www.jpccr.eu/Use-of-multi-planar-reconstruction-MPR-and-3-dimentional-3D-CT-to-assess-stability,71238,0,2.html |journal=Journal of Pre-Clinical and Clinical Research |volume=1 |issue=1 |pages=80–83 |issn=1898-2395}}</ref> An image of the spine in axial plane can only show one vertebral bone at a time and cannot show its relation with other vertebral bones. By reformatting the data in other planes, visualization of the relative position can be achieved in sagittal and coronal plane.<ref>{{Cite journal |last=Tins |first=Bernhard |date=2010-10-21 |title=Technical aspects of CT imaging of the spine |journal=Insights into Imaging |volume=1 |issue=5–6 |pages=349–359 |doi=10.1007/s13244-010-0047-2 |issn=1869-4101 |pmc=3259341 |pmid=22347928}}</ref> New software allows the reconstruction of data in non-orthogonal (oblique) planes, which help in the visualization of organs which are not in orthogonal planes.<ref>{{Cite web |title=CT imaging: Where are we going? (Proceedings) |url=https://www.dvm360.com/view/ct-imaging-where-are-we-going-proceedings |access-date=2021-03-21 |website=DVM 360|date=April 2010}}</ref><ref>{{Cite book |last1=Wolfson |first1=Nikolaj |url=https://books.google.com/books?id=8Y5FDAAAQBAJ&q=Modern+software+allows+reconstruction+in+non-orthogonal&pg=PA373 |title=Orthopedics in Disasters: Orthopedic Injuries in Natural Disasters and Mass Casualty Events |last2=Lerner |first2=Alexander |last3=Roshal |first3=Leonid |date=2016-05-30 |publisher=Springer |isbn=978-3-662-48950-5}}</ref> It is better suited for visualization of the anatomical structure of the bronchi as they do not lie orthogonal to the direction of the scan.<ref>{{Cite journal |last1=Laroia |first1=Archana T |last2=Thompson |first2=Brad H |last3=Laroia |first3=Sandeep T |last4=van Beek |first4=Edwin JR |date=2010-07-28 |title=Modern imaging of the tracheo-bronchial tree |journal=World Journal of Radiology |volume=2 |issue=7 |pages=237–248 |doi=10.4329/wjr.v2.i7.237 |issn=1949-8470 |pmc=2998855 |pmid=21160663 |doi-access=free}}</ref> Curved-plane reconstruction (or curved planar reformation = CPR) is performed mainly for the evaluation of vessels. This type of reconstruction helps to straighten the bends in a vessel, thereby helping to visualize a whole vessel in a single image or in multiple images. After a vessel has been "straightened", measurements such as cross-sectional area and length can be made. This is helpful in preoperative assessment of a surgical procedure.<ref>{{Cite journal |last1=Gong |first1=Jing-Shan |last2=Xu |first2=Jian-Min |date=2004-07-01 |title=Role of curved planar reformations using multidetector spiral CT in diagnosis of pancreatic and peripancreatic diseases |journal=World Journal of Gastroenterology |volume=10 |issue=13 |pages=1943–1947 |doi=10.3748/wjg.v10.i13.1943 |issn=1007-9327 |pmc=4572236 |pmid=15222042 |doi-access=free}}</ref> For 2D projections used in [[radiation therapy]] for quality assurance and planning of [[external beam radiotherapy]], including digitally reconstructed radiographs, see [[Beam's eye view]]. {| class="wikitable" |+Examples of different algorithms of thickening multiplanar reconstructions<ref>{{Cite journal |last1=Dalrymple |first1=Neal C. |last2=Prasad |first2=Srinivasa R. |last3=Freckleton |first3=Michael W. |last4=Chintapalli |first4=Kedar N. |date=September 2005 |title=Informatics in radiology (infoRAD): introduction to the language of three-dimensional imaging with multidetector CT |journal=Radiographics |volume=25 |issue=5 |pages=1409–1428 |doi=10.1148/rg.255055044 |issn=1527-1323 |pmid=16160120}}</ref> !Type of projection !Schematic illustration !Examples (10 mm slabs) !Description !Uses |- |Average intensity projection (AIP) |[[File:Average intensity projection.gif|frameless]] |[[File:Coronal average intensity projection CT thorax.gif|frameless|118x118px]] |The average attenuation of each voxel is displayed. The image will get smoother as slice thickness increases. It will look more and more similar to conventional [[projectional radiography]] as slice thickness increases. |Useful for identifying the internal structures of a solid organ or the walls of hollow structures, such as intestines. |- |[[Maximum intensity projection]] (MIP) |[[File:Maximum intensity projection.gif|frameless]] |[[File:Coronal maximum intensity projection CT thorax.gif|frameless|118x118px]] |The voxel with the highest attenuation is displayed. Therefore, high-attenuating structures such as blood vessels filled with contrast media are enhanced. |Useful for angiographic studies and identification of pulmonary nodules. |- |[[Minimum intensity projection]] (MinIP) |[[File:Minimum intensity projection.gif|frameless]] |[[File:Coronal minimum intensity projection CT thorax.gif|frameless|117x117px]] |The voxel with the lowest attenuation is displayed. Therefore, low-attenuating structures such as air spaces are enhanced. |Useful for assessing the lung parenchyma. |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
CT scan
(section)
Add topic