Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bernoulli number
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Related sequences== The arithmetic mean of the first and the second Bernoulli numbers are the associate Bernoulli numbers: {{math|1=''B''<sub>0</sub> = 1}}, {{math|1=''B''<sub>1</sub> = 0}}, {{math|1=''B''<sub>2</sub> = {{sfrac|1|6}}}}, {{math|1=''B''<sub>3</sub> = 0}}, {{math|1=''B''<sub>4</sub> = β{{sfrac|1|30}}}}, {{OEIS2C|id=A176327}} / {{OEIS2C|id=A027642}}. Via the second row of its inverse AkiyamaβTanigawa transform {{OEIS2C|id=A177427}}, they lead to Balmer series {{OEIS2C|id=A061037}} / {{OEIS2C|id=A061038}}. The AkiyamaβTanigawa algorithm applied to {{OEIS2C|id=A060819}} ({{math|''n'' + 4}}) / {{OEIS2C|id=A145979}} ({{mvar|n}}) leads to the Bernoulli numbers {{OEIS2C|id=A027641}} / {{OEIS2C|id=A027642}}, {{OEIS2C|id=A164555}} / {{OEIS2C|id=A027642}}, or {{OEIS2C|id=A176327}} {{OEIS2C|id=A176289}} without {{math|''B''<sub>1</sub>}}, named intrinsic Bernoulli numbers {{math|''B''<sub>''i''</sub>(''n'')}}. :{| style="text-align:center; padding-left; padding-right: 2em;" |- |1||{{sfrac|5|6}}||{{sfrac|3|4}}||{{sfrac|7|10}}||{{sfrac|2|3}} |- |{{sfrac|1|6}}||{{sfrac|1|6}}||{{sfrac|3|20}}||{{sfrac|2|15}}||{{sfrac|5|42}} |- |0||{{sfrac|1|30}}||{{sfrac|1|20}}||{{sfrac|2|35}}||{{sfrac|5|84}} |- |β{{sfrac|1|30}}||β{{sfrac|1|30}}||β{{sfrac|3|140}}||β{{sfrac|1|105}}||0 |- |0||β{{sfrac|1|42}}||β{{sfrac|1|28}}||β{{sfrac|4|105}}||β{{sfrac|1|28}} |} Hence another link between the intrinsic Bernoulli numbers and the Balmer series via {{OEIS2C|id=A145979}} ({{math|''n''}}). {{OEIS2C|id=A145979}} ({{math|''n'' β 2}}) = 0, 2, 1, 6,... is a permutation of the non-negative numbers. The terms of the first row are f(n) = {{math|{{sfrac|1|2}} + {{sfrac|1|''n'' + 2}}}}. 2, f(n) is an autosequence of the second kind. 3/2, f(n) leads by its inverse binomial transform to 3/2 β1/2 1/3 β1/4 1/5 ... = 1/2 + log 2. Consider g(n) = 1/2 β 1 / (n+2) = 0, 1/6, 1/4, 3/10, 1/3. The Akiyama-Tanagiwa transforms gives: :{| style="text-align:center; padding-left; padding-right:2em;" |- |0||{{sfrac|1|6}}||{{sfrac|1|4}}||{{sfrac|3|10}}||{{sfrac|1|3}}||{{sfrac|5|14}}||... |- |β{{sfrac|1|6}}||β{{sfrac|1|6}}||β{{sfrac|3|20}}||β{{sfrac|2|15}}||β{{sfrac|5|42}}||β{{sfrac|3|28}}||... |- |0||β{{sfrac|1|30}}||β{{sfrac|1|20}}||β{{sfrac|2|35}}||β{{sfrac|5|84}}||β{{sfrac|5|84}}||... |- |{{sfrac|1|30}}||{{sfrac|1|30}}||{{sfrac|3|140}}||{{sfrac|1|105}}||0||β{{sfrac|1|140}}||... |} 0, g(n), is an autosequence of the second kind. Euler {{OEIS2C|id=A198631}} ({{math|''n''}}) / {{OEIS2C|id=A006519}} ({{math|''n'' + 1}}) without the second term ({{sfrac|1|2}}) are the fractional intrinsic Euler numbers {{math|''E''<sub>''i''</sub>(''n'') {{=}} 1, 0, β{{sfrac|1|4}}, 0, {{sfrac|1|2}}, 0, β{{sfrac|17|8}}, 0, ...}} The corresponding Akiyama transform is: :{| style="text-align:center; padding-left; padding-right: 2em;" |- |1||1||{{sfrac|7|8}}||{{sfrac|3|4}}||{{sfrac|21|32}} |- |0||{{sfrac|1|4}}||{{sfrac|3|8}}||{{sfrac|3|8}}||{{sfrac|5|16}} |- |β{{sfrac|1|4}}||β{{sfrac|1|4}}||0||{{sfrac|1|4}}||{{sfrac|25|64}} |- |0||β{{sfrac|1|2}}||β{{sfrac|3|4}}||β{{sfrac|9|16}}||β{{sfrac|5|32}} |- |{{sfrac|1|2}}||{{sfrac|1|2}}||β{{sfrac|9|16}}||β{{sfrac|13|8}}||β{{sfrac|125|64}} |} The first line is {{math|''Eu''(''n'')}}. {{math|''Eu''(''n'')}} preceded by a zero is an autosequence of the first kind. It is linked to the Oresme numbers. The numerators of the second line are {{OEIS2C|id=A069834}} preceded by 0. The difference table is: :{| style="text-align:center; padding-left; padding-right: 2em;" |- |0||1||1||{{sfrac|7|8}}||{{sfrac|3|4}}||{{sfrac|21|32}}||{{sfrac|19|32}} |- |1||0||β{{sfrac|1|8}}||β{{sfrac|1|8}}||β{{sfrac|3|32}}||β{{sfrac|1|16}}||β{{sfrac|5|128}} |- |β1||β{{sfrac|1|8}}||0||{{sfrac|1|32}}||{{sfrac|1|32}}||{{sfrac|3|128}}||{{sfrac|1|64}} |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Bernoulli number
(section)
Add topic