Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Monte Carlo method
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Integration === {{Main|Monte Carlo integration}} [[File:Monte-carlo2.gif|thumb|Monte-Carlo integration works by comparing random points with the value of the function.]] [[File:Monte-Carlo method (errors).png|thumb|Errors reduce by a factor of <math>\scriptstyle 1/\sqrt{N}</math>.]] Deterministic [[numerical integration]] algorithms work well in a small number of dimensions, but encounter two problems when the functions have many variables. First, the number of function evaluations needed increases rapidly with the number of dimensions. For example, if 10 evaluations provide adequate accuracy in one dimension, then [[googol|10<sup>100</sup>]] points are needed for 100 dimensions—far too many to be computed. This is called the [[curse of dimensionality]]. Second, the boundary of a multidimensional region may be very complicated, so it may not be feasible to reduce the problem to an [[iterated integral]].<ref name=Press>{{harvnb|Press|Teukolsky|Vetterling|Flannery|1996}}</ref> 100 [[dimension]]s is by no means unusual, since in many physical problems, a "dimension" is equivalent to a [[degrees of freedom (physics and chemistry)|degree of freedom]]. Monte Carlo methods provide a way out of this exponential increase in computation time. As long as the function in question is reasonably [[well-behaved]], it can be estimated by randomly selecting points in 100-dimensional space, and taking some kind of average of the function values at these points. By the [[central limit theorem]], this method displays <math>\scriptstyle 1/\sqrt{N}</math> convergence—i.e., quadrupling the number of sampled points halves the error, regardless of the number of dimensions.<ref name=Press/> A refinement of this method, known as [[importance sampling]] in statistics, involves sampling the points randomly, but more frequently where the integrand is large. To do this precisely one would have to already know the integral, but one can approximate the integral by an integral of a similar function or use adaptive routines such as [[stratified sampling]], [[Monte Carlo integration#Recursive stratified sampling|recursive stratified sampling]], adaptive umbrella sampling<ref>{{cite journal|last=MEZEI|first=M|title=Adaptive umbrella sampling: Self-consistent determination of the non-Boltzmann bias|journal=Journal of Computational Physics|date=December 31, 1986|volume=68|issue=1|pages=237–248|doi=10.1016/0021-9991(87)90054-4|bibcode = 1987JCoPh..68..237M}}</ref><ref>{{cite journal|last1=Bartels|first1=Christian|last2=Karplus|first2=Martin|title=Probability Distributions for Complex Systems: Adaptive Umbrella Sampling of the Potential Energy|journal=The Journal of Physical Chemistry B|date=December 31, 1997|volume=102|issue=5|pages=865–880|doi=10.1021/jp972280j}}</ref> or the [[VEGAS algorithm]]. A similar approach, the [[quasi-Monte Carlo method]], uses [[low-discrepancy sequence]]s. These sequences "fill" the area better and sample the most important points more frequently, so quasi-Monte Carlo methods can often converge on the integral more quickly. Another class of methods for sampling points in a volume is to simulate random walks over it ([[Markov chain Monte Carlo]]). Such methods include the [[Metropolis–Hastings algorithm]], [[Gibbs sampling]], [[Wang and Landau algorithm]], and interacting type MCMC methodologies such as the [[Particle filter|sequential Monte Carlo]] samplers.<ref>{{Cite journal|title = Sequential Monte Carlo samplers|journal = Journal of the Royal Statistical Society, Series B|doi=10.1111/j.1467-9868.2006.00553.x|volume=68|issue = 3|pages=411–436|year = 2006|last1 = Del Moral|first1 = Pierre|last2 = Doucet|first2 = Arnaud|last3 = Jasra|first3 = Ajay|arxiv = cond-mat/0212648|s2cid = 12074789}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Monte Carlo method
(section)
Add topic