Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Medical ultrasound
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Sound in the body == [[File:A medical ultrasound linear array probe, scan head, transducer.jpg|thumb|Curvilinear array transducer]] Ultrasonography ([[sonography]]) uses a probe containing multiple acoustic [[transducer]]s to send pulses of sound into a material. Whenever a sound wave encounters a material with a different density (acoustical impedance), some of the sound wave is scattered but part is reflected back to the probe and is detected as an echo. The time it takes for the [[Echo (phenomenon)|echo]] to travel back to the probe is measured and used to calculate the depth of the tissue interface causing the echo. The greater the difference between acoustic impedances, the larger the echo is. If the pulse hits gases or solids, the density difference is so great that most of the acoustic energy is reflected and it becomes impossible to progress further.{{citation needed|date=July 2024}} The frequencies used for medical imaging are generally in the range of 1 to 18 MHz Higher frequencies have a correspondingly smaller wavelength, and can be used to make more detailed sonograms. However, the attenuation of the sound wave is increased at higher frequencies, so penetration of deeper tissues necessitates a lower frequency (3β5 MHz). Penetrating deep into the body with sonography is difficult. Some acoustic energy is lost each time an echo is formed, but most of it (approximately <math>\textstyle 0.5 \frac{\mbox{dB}}{\mbox{cm depth}\cdot\mbox{MHz}}</math>) is lost from acoustic absorption. (See [[Acoustic attenuation]] for further details on modeling of acoustic attenuation and absorption.) The speed of sound varies as it travels through different materials, and is dependent on the [[Acoustic impedance|acoustical impedance]] of the material. However, the sonographic instrument assumes that the acoustic velocity is constant at 1540 m/s. An effect of this assumption is that in a real body with non-uniform tissues, the beam becomes somewhat de-focused and image resolution is reduced. To generate a [[2D computer graphics|2-D]] image, the ultrasonic beam is swept. A transducer may be swept mechanically by rotating or swinging or a 1-D [[phased array]] transducer may be used to sweep the beam electronically. The received data is processed and used to construct the image. The image is then a 2-D representation of the slice into the body. [[3D computer graphics|3-D]] images can be generated by acquiring a series of adjacent 2-D images. Commonly a specialized probe that mechanically scans a conventional 2-D image transducer is used. However, since the mechanical scanning is slow, it is difficult to make 3D images of moving tissues. Recently, 2-D phased array transducers that can sweep the beam in 3-D have been developed. These can image faster and can even be used to make live 3-D images of a beating heart. [[Doppler effect|Doppler]] ultrasonography is used to study blood flow and muscle motion. The different detected speeds are represented in color for ease of interpretation, for example leaky heart valves: the leak shows up as a flash of unique color. Colors may alternatively be used to represent the amplitudes of the received echoes.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Medical ultrasound
(section)
Add topic