Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Inductor
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Inductance formulas== {{See also|Inductance#Self-inductance of thin wire shapes}} The table below lists some common simplified formulas for calculating the approximate inductance of several inductor constructions. {| class="wikitable" ! Construction ! Formula ! Notes |- ! Cylindrical air-core coil<ref name=Nagaoka>{{cite journal | last=Nagaoka | first=Hantaro | author-link=Hantaro Nagaoka | title=The Inductance Coefficients of Solenoids | url=http://www.g3ynh.info/zdocs/refs/Nagaoka1909.pdf | journal=Journal of the College of Science, Imperial University, Tokyo, Japan | page=18 | volume=27 | date=1909-05-06 | access-date=2011-11-10 }}</ref> | <math>L = \mu_0 K N^2 \frac{A}{\ell} </math> * ''L'' = inductance in [[Henry (unit)|henries]] (H) * ''μ<sub>0</sub>'' = [[permeability of free space]] = 4''<math>\pi</math>'' × 10<sup>−7</sup> H/m * ''K'' = Nagaoka coefficient<ref name=Nagaoka/><ref group=lower-alpha>Nagaoka's coefficient (''K'') is approximately 1 for a coil which is much longer than its diameter and is tightly wound using small gauge wire (so that it approximates a current sheet).</ref> * ''N'' = number of turns * ''A'' = area of cross-section of the coil in square metres (m<sup>2</sup>) * ''ℓ'' = length of coil in metres (m) |<math>K\approx 1</math> Calculation of Nagaoka's coefficient (''K'') is complicated; normally it must be looked up from a table.<ref>Kenneth L. Kaiser, ''Electromagnetic Compatibility Handbook'', p. 30.64, CRC Press, 2004 {{ISBN|0849320879}}.</ref> |- ! rowspan="2"| Straight wire conductor<ref>{{Cite journal |url=http://www.g3ynh.info/zdocs/refs/NBS/Rosa1908.pdf |title=The Self and Mutual Inductances of Linear Conductors |first=Edward B. |last=Rosa |journal=Bulletin of the Bureau of Standards |volume=4 |issue=2 |year=1908 |pages=301–344 |doi=10.6028/bulletin.088|doi-access=free }}</ref> | <math>L = \frac{\mu_0}{2\pi}\ \ell \left( A \; - \; B\right) + C</math>, where: :<math>\begin{align} A &= \ln\left(\frac{\ell}{r} + \sqrt{ \left(\frac{\ell}{r}\right)^2 + 1}\right) \\ B &= \frac{1}{\frac{r}{\ell} + \sqrt{1 + \left(\frac{r}{\ell}\right)^2}} \\ C &= \text{Im}\left(\frac{n\rho J_0(nr)}{2\pi\omega\mu rJ_1(nr)}\right) \end{align}</math> * ''L'' = inductance * ''ℓ'' = cylinder length * ''r'' = cylinder radius * ''μ''<sub>0</sub> = permeability of free space = 4''<math>\pi</math>'' × 10<sup>−7</sup> H/m * ''μ'' = conductor permeability * ''ρ'' = resistivity * ''ω'' = angular frequency * <math>n = \sqrt{-i\frac{\omega\mu}{\rho}} = (-1 + i)\sqrt{\frac{\omega\mu}{2\rho}}</math> * <math>J_0, J_1</math> are [[Bessel functions of the first kind|Bessel functions]]. * <math>\tfrac{\mu_0}{2\pi}</math> = 0.2 μH/m, exactly. | The term ''C'' gives the ''internal'' inductance of the wire with skin-effect correction (the imaginary part of the internal impedance of the wire). If ω = 0 (DC) then <math>C = \frac{\mu}{8\pi},</math> and as ω approaches ∞, ''C'' approaches 0.<ref>{{cite book|title=Electric transmission lines : distributed constants, theory, and application|year=1951|first1=Hugh Hildreth|last1=Skilling|pages=153–159|publisher=Mcgraw-Hill}}</ref> The term ''B'' subtracts rather than adds. |- | <math>L = \frac{\mu_0}{2\pi}\ \ell \left[\ln\left(\frac{4\ell}{d}\right) - 1\right]</math> (when {{nowrap|''d''² ''f'' ≫ 1 mm² MHz}}) <math>L = \frac{\mu_0}{2\pi}\ \ell \left[\ln\left(\frac{4\ell}{d}\right) - \frac{3}{4}\right]</math> (when {{nowrap|''d''² ''f'' ≪ 1 mm² MHz}}) * ''L'' = inductance (nH)<ref>{{Harvnb|Rosa|1908|loc=equation (11a)}}, subst. radius ''ρ'' = d/2 and [[cgs]] units</ref><ref name="Terman straight">{{Harvnb|Terman|1943|pp=48–49}}, convert to natural logarithms and inches to mm.</ref> * ''ℓ'' = length of conductor (mm) * ''d'' = diameter of conductor (mm) * ''f'' = frequency * <math>\tfrac{\mu_0}{2\pi}</math> = 0.2 μH/m, exactly. | Requires ''ℓ'' > 100 ''d''<ref name="Terman adjust">{{Harvtxt|Terman|1943|p=48}} states for ''ℓ'' < 100 ''d'', include ''d''/2''ℓ'' within the parentheses.</ref> For relative permeability ''μ''<sub>r</sub> = 1 (e.g., [[copper|Cu]] or [[aluminum|Al]]). |- ! Small loop or very short coil<ref>Burger, O. & Dvorský, M. (2015). ''Magnetic Loop Antenna''. Ostrava, Czech Republic: EDUCA TV o.p.s.</ref> | <math>L \approx \frac{\mu_0}{2\pi} N^2 \pi D \left[ \ln\left( \frac{D}{d} \right) + \left(\ln 8 - 2\right) \right] + \sqrt{\frac{\mu_0}{2\pi}}\; \frac{N D}{d} \sqrt{\frac{\mu_\text{r}}{2 f \sigma}} </math> * ''L'' = inductance in the same units as ''μ''<sub>0</sub>. * ''D'' = Diameter of the coil (conductor center-to-center) * ''d'' = diameter of the conductor * ''N'' = number of turns * ''f'' = operating frequency (regular ''f'', not ''ω'') * ''σ'' = specific conductivity of the coil conductor * ''μ''<sub>r</sub> = relative permeability of the conductor * Total conductor length <math>\ell_\text{c} \approx N \pi D</math> should be roughly {{frac|1|10}} wavelength or smaller.<ref>Values of <math>\pi D</math> up to {{frac|1|3}} wavelength are feasible antennas, but for windings that long, this formula will be inaccurate.</ref> * Proximity effects are not included: edge-to-edge gap between turns should be 2×''d'' or larger. * <math>\tfrac{\mu_0}{2\pi}</math> = 0.2 μH/m, exactly. | Conductor ''μ''<sub>r</sub> should be as close to 1 as possible – [[copper]] or [[aluminum]] rather than a magnetic or paramagnetic metal. |- ! Medium or long air-core [[solenoid|cylindrical coil]]<ref>ARRL Handbook, 66th Ed. American Radio Relay League (1989).</ref><ref>{{Cite web|date=2014-07-09|title=Helical coil calculator|url=https://kaizerpowerelectronics.dk/calculators/helical-coil-calculator/|access-date=2020-12-29|website=Kaizer Power Electronics|language=en-US}}</ref> | <math>L = \frac{r^2 N^2}{23 r + 25 \ell}</math> * ''L'' = inductance (μH) * ''r'' = outer radius of coil (cm) * ''ℓ'' = length of coil (cm) * ''N'' = number of turns | Requires cylinder length ''ℓ'' > 0.4 ''r'': Length must be at least {{frac|1|5}} of the diameter. Not applicable to single-loop antennas or very short, stubby coils. |- ! Multilayer air-core coil<ref>{{cite journal|last1=Wheeler|first1=H.A.|title=Simple Inductance Formulas for Radio Coils|journal=Proceedings of the Institute of Radio Engineers|date=October 1928|volume=16|issue=10|page=1398|doi=10.1109/JRPROC.1928.221309|s2cid=51638679}}</ref> | <math>L = \frac{r^2 N^2}{19 r + 29 \ell + 32 d}</math> * ''L'' = inductance (μH) * ''r'' = mean radius of coil (cm) * ''ℓ'' = physical length of coil winding (cm) * ''N'' = number of turns * ''d'' = depth of coil (outer radius minus inner radius) (cm) | |- ! rowspan="2"|Flat spiral air-core coil<ref>For the second formula, {{Harvtxt|Terman|1943|p=58}} which cites to {{Harvnb|Wheeler|1928}}.</ref><ref>{{Cite web|url=http://quantum-technologies.iap.uni-bonn.de/de/diplom-theses.html?task=download&file=302&token=fff191dcc4193aae12b9b5b0e9e199c9|title=A Magnetic Elevator for Neutral Atoms into a 2D State-dependent Optical Lattice Experiment|website=Uni-Bonn|access-date=2017-08-15|archive-date=2018-05-23|archive-url=https://web.archive.org/web/20180523063438/http://quantum-technologies.iap.uni-bonn.de/de/diplom-theses.html?task=download&file=302&token=fff191dcc4193aae12b9b5b0e9e199c9|url-status=dead}}</ref><ref>{{Cite web|date=2014-07-10|title=Spiral coil calculator|url=https://kaizerpowerelectronics.dk/calculators/spiral-coil-calculator/|access-date=2020-12-29|website=Kaizer Power Electronics|language=en-US}}</ref> | <math>L = \frac{r^2 N^2}{20 r + 28 d}</math> * ''L'' = inductance (μH) * ''r'' = mean radius of coil (cm) * ''N'' = number of turns * ''d'' = depth of coil (outer radius minus inner radius) (cm) | |- | <math>L = \frac{r^2 N^2}{8 r + 11 d}</math> * ''L'' = inductance (μH) * ''r'' = mean radius of coil (in) * ''N'' = number of turns * ''d'' = depth of coil (outer radius minus inner radius) (in) | Accurate to within 5 percent for ''d'' > 0.2 ''r''.<ref name="Terman1943">{{Harvnb|Terman|1943|p=58}}</ref> |- ! rowspan="2"|Toroidal air-core (circular cross-section)<ref>{{Harvnb|Terman|1943|p=57}}</ref> | <math>L = 2\pi N^2 \left(D - \sqrt{D^2 - d^2}\right)</math> * ''L'' = inductance (nH) * ''d'' = diameter of coil winding (cm) * ''N'' = number of turns * ''D'' = 2 * radius of revolution (cm) | |- | <math>L \approx \pi {d^2 N^2 \over D}</math> * ''L'' = inductance (nH) * ''d'' = diameter of coil winding (cm) * ''N'' = number of turns * ''D'' = 2 * radius of revolution (cm) | Approximation when ''d'' < 0.1 ''D'' |- ! Toroidal air-core (rectangular cross-section)<ref name="Terman1943" /> | <math>L = 2 N^2 h \ln\left({\frac{d_2}{d_1}}\right)</math> * ''L'' = inductance (nH) * ''d<sub>1</sub>'' = inside diameter of toroid (cm) * ''d<sub>2</sub>'' = outside diameter of toroid (cm) * ''N'' = number of turns * ''h'' = height of toroid (cm) | |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Inductor
(section)
Add topic