Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Inductance
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Self-inductance of thin wire shapes== {{See also|Inductor#Inductance formulas}} The table below lists formulas for the self-inductance of various simple shapes made of thin cylindrical conductors (wires). In general these are only accurate if the wire radius <math>a</math> is much smaller than the dimensions of the shape, and if no ferromagnetic materials are nearby (no [[magnetic core]]). {| class="wikitable" |+ Self-inductance of thin wire shapes ! scope="col" | Type ! scope="col" | Inductance ! scope="col" | Explanation of symbols |- ! scope="row" | Single layer<br/>solenoid | Wheeler's approximation formula for current-sheet model air-core coil:<ref>{{cite journal |doi=10.1109/JRPROC.1942.232015|title=Formulas for the Skin Effect |year=1942 |last1=Wheeler |first1=H.A. |journal=Proceedings of the IRE |volume=30 |issue=9 |pages=412β424 |s2cid=51630416 }}</ref><ref>{{cite journal |doi=10.1109/JRPROC.1928.221309|title=Simple Inductance Formulas for Radio Coils |year=1928 |last1=Wheeler |first1=H.A. |journal=Proceedings of the IRE |volume=16 |issue=10 |pages=1398β1400 |s2cid=51638679 }}</ref> <math>\mathcal{L} = \frac{N^2 D^2}{18D + 40\ell}</math> (inches) <math>\mathcal{L} = \frac{N^2 D^2}{45.72D + 101.6\ell}</math> (cm) This formula gives an error no more than 1% {{nowrap|when <math>\ell > 0.4\, D ~.</math>}} | {{plainlist| * <math>\mathcal{L}</math>: inductance in ΞΌH ({{10^|β6}} henries) * <math>N</math>: number of turns * <math>D</math>: diameter in (inches) (cm) * <math>\ell</math>: length in (inches) (cm) }} |- ! scope="row | Coaxial <br/>cable (HF) | <math>\mathcal{L} = \frac{\mu_0}{2\pi} \ell \ln\left(\frac{b}{a}\right)</math> | {{ubl | <math>b</math>: Outer conductor's inside radius | <math>a</math>: Inner conductor's radius | <math>\ell</math>: Length | <math>\mu_0 </math>: see table footnote. }} |- ! scope="row | Circular loop<ref>{{cite book |last=Elliott |first=R.S. |title=Electromagnetics |publisher=IEEE Press |year=1993 |location=New York}} Note: The published constant {{frac|β3|2}} in the result for a uniform current distribution is wrong.</ref> | <math>\mathcal{L} = \mu_0\ r\ \left[\ln\left(\frac{8 r}{a}\right) - 2 + \tfrac{1}{4}Y + \mathcal{O} \left(\frac{a^2}{r^2}\right)\right]</math> | {{ubl | <math>r</math>: Loop radius | <math>a</math>: Wire radius | <math>\mu_0, Y</math>: see table footnotes. }} |- ! scope="row | Rectangle from <br/>round wire<ref>{{cite book |first=Frederick W. |last=Grover |title=Inductance Calculations: Working formulas and tables |publisher=Dover Publications, Inc. |location=New York |year=1946}}</ref> | <math>\begin{align} \mathcal{L} = \frac{\mu_0}{\pi}\ \biggl[\ &\ell_1\ln\left(\frac{2\ell_1}{a}\right) + \ell_2\ \ln\left(\frac{2\ell_2}{a}\right) + 2\sqrt{\ell_1^2 + \ell_2^2\ } \\ &- \ell_1\ \sinh^{-1}\left(\frac{\ell_1}{\ell_2}\right) - \ell_2 \sinh^{-1}\left(\frac{\ell_2}{\ell_1}\right) \\ &- \left(2 - \tfrac{1}{4}Y\ \right)\left(\ell_1 + \ell_2\right)\ \biggr] \end{align}</math> | {{ubl | <math>\ell_1, \ell_2</math>: Side lengths | {{nowrap|<math>\ \ell_1 \gg a, \ell_2 \gg a\ </math>}} | <math>a</math>: Wire radius | <math>\mu_0, Y</math>: see table footnotes. }} |- ! scope="row | Pair of parallel<br/> wires | <math>\mathcal{L} = \frac{\ \mu_0 }{\pi}\ \ell\ \left[ \ln\left(\frac{s}{a}\right) + \tfrac{1}{4}Y \right] </math> | {{ubl | <math>a</math>: Wire radius | <math>s</math>: Separation distance, {{nowrap|<math>s \ge 2a</math>}} | <math>\ell</math>: Length of pair | <math>\mu_0, Y</math>: see table footnotes. }} |- ! scope="row | Pair of parallel<br/> wires (HF) | <math>\begin{align} \mathcal{L} &= \frac{\mu_0}{\pi}\ \ell\ \cosh^{-1}\left(\frac{s}{2a}\right) \\ &= \frac{\mu_0}{\pi}\ \ell\ \ln\left(\frac{s}{2a} + \sqrt{\frac{s^2}{4a^2} - 1}\right) \\ &\approx \frac{\mu_0}{\pi}\ \ell\ \ln\left(\frac{s}{a}\right) \end{align}</math> | {{ubl | <math>a</math>: Wire radius | <math>s</math>: Separation distance, {{nowrap|<math>s \ge 2a</math>}} | <math>\ell</math>: Length (each) of pair | <math>\mu_0</math>: see table footnote. }} |} {{anchor|current_distribution_parameter_Y}}<math>Y</math> is an approximately constant value between 0 and 1 that depends on the distribution of the current in the wire: {{nowrap|<math>Y = 0</math>}} when the current flows only on the surface of the wire (complete [[skin effect]]), {{nowrap|<math>Y = 1</math>}} when the current is evenly spread over the cross-section of the wire ([[direct current]]). For round wires, Rosa (1908) gives a formula equivalent to:<ref name=Rosa1908/> <math display=block>Y \approx \frac{1}{\, 1 + a\ \sqrt{\tfrac{1}{8}\mu\sigma\omega \,} \,}</math> where {{plainlist|indent=1|1= * <math>\omega = 2\pi f</math> is the angular frequency, in radians per second; * <math>\mu = \mu_0\,\mu_\text{r}</math> is the net [[magnetic permeability]] of the wire; * <math>\sigma</math> is the wire's specific conductivity; and * <math>a</math> is the wire radius. }} <math>\mathcal{O}(x)</math> is represents small term(s) that have been dropped from the formula, to make it simpler. Read the term <math>{}+ \mathcal{O}(x)</math> as "plus small corrections that vary on the order of {{nowrap|<math>x</math>"}} (see [[big O notation]]).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Inductance
(section)
Add topic