Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Banach space
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Results involving the {{math|π<sup>1</sup>}} basis==== Weakly Cauchy sequences and the <math>\ell^1</math> basis are the opposite cases of the dichotomy established in the following deep result of H. P. Rosenthal.<ref>{{cite journal|last1=Rosenthal|first1=Haskell P|year=1974|title=A characterization of Banach spaces containing β<sup>1</sup>|journal=Proc. Natl. Acad. Sci. U.S.A.|volume=71|issue=6| pages=2411β2413 | doi=10.1073/pnas.71.6.2411|pmid=16592162|pmc=388466|arxiv=math.FA/9210205|bibcode=1974PNAS...71.2411R|doi-access=free}} Rosenthal's proof is for real scalars. The complex version of the result is due to L. Dor, in {{cite journal| last1=Dor|first1=Leonard E|year=1975|title=On sequences spanning a complex β<sup>1</sup> space|journal=Proc. Amer. Math. Soc. | volume=47|pages=515β516|doi=10.1090/s0002-9939-1975-0358308-x|doi-access=free}}</ref> {{math theorem| name = Theorem<ref>see p. 201 in {{harvtxt|Diestel|1984}}.</ref> | math_statement = Let <math>\{x_n\}_{n \in \N}</math> be a bounded sequence in a Banach space. Either <math>\{x_n\}_{n \in \N}</math> has a weakly Cauchy subsequence, or it admits a subsequence [[Schauder basis#Definitions|equivalent]] to the standard unit vector basis of <math>\ell^1.</math>}} A complement to this result is due to Odell and Rosenthal (1975). {{math theorem| name = Theorem<ref>{{citation|last1=Odell|first1=Edward W.|last2=Rosenthal|first2=Haskell P.|title=A double-dual characterization of separable Banach spaces containing β<sup>1</sup>|journal=[[Israel Journal of Mathematics]]|volume=20|year=1975|issue=3β4 |pages=375β384|doi=10.1007/bf02760341|doi-access=free|s2cid=122391702|url=http://dml.cz/bitstream/handle/10338.dmlcz/133414/CommentatMathUnivCarolRetro_50-2009-1_5.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://dml.cz/bitstream/handle/10338.dmlcz/133414/CommentatMathUnivCarolRetro_50-2009-1_5.pdf |archive-date=2022-10-09 |url-status=live}}.</ref> | math_statement = Let <math>X</math> be a separable Banach space. The following are equivalent: *The space <math>X</math> does not contain a closed subspace isomorphic to <math>\ell^1.</math> *Every element of the bidual <math>X''</math> is the weak*-limit of a sequence <math>\{x_n\}</math> in <math>X.</math>}} By the Goldstine theorem, every element of the unit ball <math>B''</math> of <math>X''</math> is weak*-limit of a net in the unit ball of <math>X.</math> When <math>X</math> does not contain <math>\ell^1,</math> every element of <math>B''</math> is weak*-limit of a {{em|sequence}} in the unit ball of <math>X.</math><ref>Odell and Rosenthal, Sublemma p. 378 and Remark p. 379.</ref> When the Banach space <math>X</math> is separable, the unit ball of the dual <math>X',</math> equipped with the weak*-topology, is a metrizable compact space <math>K,</math><ref name="DualBall" /> and every element <math>x''</math> in the bidual <math>X''</math> defines a bounded function on <math>K</math>: <math display=block>x' \in K \mapsto x''(x'), \quad |x''(x')| \leq \|x''\|.</math> This function is continuous for the compact topology of <math>K</math> if and only if <math>x''</math> is actually in <math>X,</math> considered as subset of <math>X''.</math> Assume in addition for the rest of the paragraph that <math>X</math> does not contain <math>\ell^1.</math> By the preceding result of Odell and Rosenthal, the function <math>x''</math> is the [[Pointwise convergence|pointwise limit]] on <math>K</math> of a sequence <math>\{x_n\} \subseteq X</math> of continuous functions on <math>K,</math> it is therefore a [[Baire function|first Baire class function]] on <math>K.</math> The unit ball of the bidual is a pointwise compact subset of the first Baire class on <math>K.</math><ref>for more on pointwise compact subsets of the Baire class, see {{citation|last1=Bourgain|first1=Jean|author1-link=Jean Bourgain|last2=Fremlin|first2=D. H.|last3=Talagrand |first3=Michel|title=Pointwise Compact Sets of Baire-Measurable Functions|journal=Am. J. Math.|volume=100|year=1978|issue=4|pages=845β886|jstor=2373913|doi=10.2307/2373913}}.</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Banach space
(section)
Add topic