Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Reinforcement learning
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Challenges and Limitations == Despite significant advancements, reinforcement learning (RL) continues to face several challenges and limitations that hinder its widespread application in real-world scenarios. === Sample Inefficiency === RL algorithms often require a large number of interactions with the environment to learn effective policies, leading to high computational costs and time-intensive to train the agent. For instance, [[OpenAI|OpenAI']]<nowiki/>s Dota-playing bot utilized thousands of years of simulated gameplay to achieve human-level performance. Techniques like experience replay and [[curriculum learning]] have been proposed to deprive sample inefficiency, but these techniques add more complexity and are not always sufficient for real-world applications. === Stability and Convergence Issues === Training RL models, particularly for [[Deep learning|deep neural network-based models]], can be unstable and prone to divergence. A small change in the policy or environment can lead to extreme fluctuations in performance, making it difficult to achieve consistent results. This instability is further enhanced in the case of the continuous or high-dimensional action space, where the learning step becomes more complex and less predictable. === Generalization and Transferability === The RL agents trained in specific environments often struggle to generalize their learned policies to new, unseen scenarios. This is the major setback preventing the application of RL to dynamic real-world environments where adaptability is crucial. The challenge is to develop such algorithms that can transfer knowledge across tasks and environments without extensive retraining. === Bias and Reward Function Issues === Designing appropriate reward functions is critical in RL because poorly designed [[Reinforcement learning|reward functions]] can lead to unintended behaviors. In addition, RL systems trained on biased data may perpetuate existing biases and lead to discriminatory or unfair outcomes. Both of these issues requires careful consideration of reward structures and data sources to ensure fairness and desired behaviors.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Reinforcement learning
(section)
Add topic