Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Formal power series
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===The Lagrange inversion formula=== {{main|Lagrange inversion theorem}} As mentioned above, any formal series <math>f \in K[[X]]</math> with ''f''<sub>0</sub> = 0 and ''f''<sub>1</sub> β 0 has a composition inverse <math>g \in K[[X]].</math> The following relation between the coefficients of ''g<sup>n</sup>'' and ''f''<sup>β''k''</sup> holds ("{{Visible anchor|Lagrange inversion formula}}"): :<math>k[X^k] g^n=n[X^{-n}]f^{-k}.</math> In particular, for ''n'' = 1 and all ''k'' β₯ 1, :<math>[X^k] g=\frac{1}{k} \operatorname{Res}\left( f^{-k}\right).</math> Since the proof of the Lagrange inversion formula is a very short computation, it is worth reporting one proof here.{{efn|A number of different proofs exist, using techniques including Cauchy's coefficient formula for holomorphic functions, tree-counting arguments, or induction.<ref>{{cite book | last1=Stanley | first1=Richard | title=Enumerative combinatorics. Volume 1. | series =Cambridge Stud. Adv. Math. | volume=49 | location=Cambridge | publisher=[[Cambridge University Press]] | year=2012 | isbn=978-1-107-60262-5 | mr=2868112 }}</ref>{{pages?|date=March 2025}}<ref>{{Citation |last1=Gessel |first1=Ira|date=2016 |title=Lagrange inversion |journal=Journal of Combinatorial Theory, Series A |volume=144 |language=en |pages=212β249 |doi=10.1016/j.jcta.2016.06.018 |arxiv=1609.05988|mr=3534068}}</ref><ref>{{Citation |last1=Surya|first1=Erlang |last2=Warnke |first2=Lutz |date=2023 |title=Lagrange Inversion Formula by Induction |journal=The American Mathematical Monthly |volume=130 |issue=10 |language=en |pages=944β948 |doi=10.1080/00029890.2023.2251344 |arxiv=2305.17576|mr=4669236}}</ref>}} Noting <math>\operatorname{ord}(f) =1 </math>, we can apply the rules of calculus above, crucially Rule (iv) substituting <math>X \rightsquigarrow f(X)</math>, to get: :<math> \begin{align} k[X^k] g^n & \ \stackrel{\mathrm{(v)}}=\ k\operatorname{Res}\left( g^n X^{-k-1} \right) \ \stackrel{\mathrm{(iv)}}=\ k\operatorname{Res}\left(X^n f^{-k-1}f'\right) \ \stackrel{\mathrm{chain}}=\ -\operatorname{Res}\left(X^n (f^{-k})'\right) \\ & \ \stackrel{\mathrm{(ii)}}=\ \operatorname{Res}\left(\left(X^n\right)' f^{-k}\right) \ \stackrel{\mathrm{chain}}=\ n\operatorname{Res}\left(X^{n-1}f^{-k}\right) \ \stackrel{\mathrm{(v)}}=\ n[X^{-n}]f^{-k}. \end{align} </math> '''Generalizations.''' One may observe that the above computation can be repeated plainly in more general settings than ''K''((''X'')): a generalization of the Lagrange inversion formula is already available working in the <math>\Complex((X))</math>-modules <math>X^{\alpha}\Complex((X)),</math> where Ξ± is a complex exponent. As a consequence, if ''f'' and ''g'' are as above, with <math>f_1=g_1=1</math>, we can relate the complex powers of ''f'' / ''X'' and ''g'' / ''X'': precisely, if Ξ± and Ξ² are non-zero complex numbers with negative integer sum, <math>m=-\alpha-\beta\in\N,</math> then :<math>\frac{1}{\alpha}[X^m]\left( \frac{f}{X} \right)^\alpha=-\frac{1}{\beta}[X^m]\left( \frac{g}{X} \right)^\beta.</math> For instance, this way one finds the power series for [[Lambert W function#Integer and complex powers|complex powers of the Lambert function]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Formal power series
(section)
Add topic