Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Distribution (mathematics)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Multiplication of distributions by smooth functions==== A differential operator of order 0 is just multiplication by a smooth function. And conversely, if <math>f</math> is a smooth function then <math>P := f(x)</math> is a differential operator of order 0, whose formal transpose is itself (that is, <math>P_* = P</math>). The induced differential operator <math>D_P : \mathcal{D}'(U) \to \mathcal{D}'(U)</math> maps a distribution <math>T</math> to a distribution denoted by <math>fT := D_P(T).</math> We have thus defined the multiplication of a distribution by a smooth function. We now give an alternative presentation of the multiplication of a distribution <math>T</math> on <math>U</math> by a smooth function <math>m : U \to \R.</math> The product <math>mT</math> is defined by <math display=block>\langle mT, \phi \rangle = \langle T, m\phi \rangle \qquad \text{ for all } \phi \in \mathcal{D}(U).</math> This definition coincides with the transpose definition since if <math>M : \mathcal{D}(U) \to \mathcal{D}(U)</math> is the operator of multiplication by the function <math>m</math> (that is, <math>(M\phi)(x) = m(x)\phi(x)</math>), then <math display=block>\int_U (M \phi)(x) \psi(x)\,dx = \int_U m(x) \phi(x) \psi(x)\,d x = \int_U \phi(x) m(x) \psi(x) \,d x = \int_U \phi(x) (M \psi)(x)\,d x,</math> so that <math>{}^tM = M.</math> Under multiplication by smooth functions, <math>\mathcal{D}'(U)</math> is a [[Module (mathematics)|module]] over the [[ring (mathematics)|ring]] <math>C^\infty(U).</math> With this definition of multiplication by a smooth function, the ordinary [[product rule]] of calculus remains valid. However, some unusual identities also arise. For example, if <math>\delta</math> is the Dirac delta distribution on <math>\R,</math> then <math>m \delta = m(0) \delta,</math> and if <math>\delta^'</math> is the derivative of the delta distribution, then <math display=block>m\delta' = m(0) \delta' - m' \delta = m(0) \delta' - m'(0) \delta.</math> The bilinear multiplication map <math>C^\infty(\R^n) \times \mathcal{D}'(\R^n) \to \mathcal{D}'\left(\R^n\right)</math> given by <math>(f,T) \mapsto fT</math> is {{em|not}} continuous; it is however, [[hypocontinuous]].{{sfn|Trèves|2006|p=423}} '''Example.''' The product of any distribution <math>T</math> with the function that is identically {{math|1}} on <math>U</math> is equal to <math>T.</math> '''Example.''' Suppose <math>(f_i)_{i=1}^\infty</math> is a sequence of test functions on <math>U</math> that converges to the constant function <math>1 \in C^\infty(U).</math> For any distribution <math>T</math> on <math>U,</math> the sequence <math>(f_i T)_{i=1}^\infty</math> converges to <math>T \in \mathcal{D}'(U).</math>{{sfn|Trèves|2006|p=261}} If <math>(T_i)_{i=1}^\infty</math> converges to <math>T \in \mathcal{D}'(U)</math> and <math>(f_i)_{i=1}^\infty</math> converges to <math>f \in C^\infty(U)</math> then <math>(f_i T_i)_{i=1}^\infty</math> converges to <math>fT \in \mathcal{D}'(U).</math> =====Problem of multiplying distributions===== It is easy to define the product of a distribution with a smooth function, or more generally the product of two distributions whose [[singular support]]s are disjoint.<ref name="StackOverflow">{{cite web|url=https://math.stackexchange.com/q/2338283|title=Multiplication of two distributions whose singular supports are disjoint|date=Jun 27, 2017|publisher=Stack Exchange Network|author=Per Persson (username: md2perpe)}}</ref> With more effort, it is possible to define a well-behaved product of several distributions provided their [[wave front set]]s at each point are compatible. A limitation of the theory of distributions (and hyperfunctions) is that there is no associative product of two distributions extending the product of a distribution by a smooth function, as has been proved by [[Laurent Schwartz]] in the 1950s. For example, if <math>\operatorname{p.v.} \frac{1}{x}</math> is the distribution obtained by the [[Cauchy principal value]] <math display=block>\left(\operatorname{p.v.} \frac{1}{x}\right)(\phi) = \lim_{\varepsilon\to 0^+} \int_{|x| \geq \varepsilon} \frac{\phi(x)}{x}\, dx \quad \text{ for all } \phi \in \mathcal{S}(\R).</math> If <math>\delta</math> is the Dirac delta distribution then <math display=block>(\delta \times x) \times \operatorname{p.v.} \frac{1}{x} = 0</math> but, <math display=block>\delta \times \left(x \times \operatorname{p.v.} \frac{1}{x}\right) = \delta</math> so the product of a distribution by a smooth function (which is always well-defined) cannot be extended to an [[Associativity|associative]] product on the space of distributions. Thus, nonlinear problems cannot be posed in general and thus are not solved within distribution theory alone. In the context of [[quantum field theory]], however, solutions can be found. In more than two spacetime dimensions the problem is related to the [[Regularization (physics)|regularization]] of [[Ultraviolet divergence|divergences]]. Here [[Henri Epstein]] and [[Vladimir Glaser]] developed the mathematically rigorous (but extremely technical) {{em|[[causal perturbation theory]]}}. This does not solve the problem in other situations. Many other interesting theories are non-linear, like for example the [[Navier–Stokes equations]] of [[fluid dynamics]]. Several not entirely satisfactory{{Citation needed|reason=Why are they not satisfactory?|date=July 2019}} theories of [[Algebra (ring theory)|algebra]]s of [[generalized function]]s have been developed, among which [[Colombeau algebra|Colombeau's (simplified) algebra]] is maybe the most popular in use today. Inspired by Lyons' [[rough path]] theory,<ref>{{Cite journal|last1=Lyons|first1=T.|title=Differential equations driven by rough signals|doi=10.4171/RMI/240|journal=Revista Matemática Iberoamericana|pages=215–310|year=1998|volume=14 |issue=2 |doi-access=free}}</ref> [[Martin Hairer]] proposed a consistent way of multiplying distributions with certain structures ([[regularity structures]]<ref>{{cite journal|last1=Hairer|first1=Martin|title=A theory of regularity structures|journal=Inventiones Mathematicae|date=2014|doi=10.1007/s00222-014-0505-4|volume=198|issue=2|pages=269–504|bibcode=2014InMat.198..269H|arxiv=1303.5113|s2cid=119138901 }}</ref>), available in many examples from stochastic analysis, notably stochastic partial differential equations. See also Gubinelli–Imkeller–Perkowski (2015) for a related development based on [[Jean-Michel Bony|Bony]]'s [[paraproduct]] from Fourier analysis.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Distribution (mathematics)
(section)
Add topic