Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Continuous function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Closure operator and interior operator definitions ==== In terms of the [[Interior (topology)|interior]] and [[Closure (topology)|closure]] operators, we have the following equivalences, {{math theorem|name=Theorem|note=|style=|math_statement=Let <math>f: X \to Y</math> be a mapping between topological spaces. Then the following are equivalent. {{ordered list|type=lower-roman | <math>f</math> is continuous; | for every subset <math>B \subseteq Y,</math> <math>f^{-1}\left(\operatorname{int}_Y B\right) \subseteq \operatorname{int}_X\left(f^{-1}(B)\right);</math> | for every subset <math>A \subseteq X,</math> <math>f\left(\operatorname{cl}_X A\right) \subseteq \operatorname{cl}_Y \left(f(A)\right).</math> }} }} {{collapse top|title=Proof|left=true}} ''Proof.''{{spaces|em}}'''i β ii'''.{{spaces|en}} Fix a subset <math>B</math> of <math>Y.</math> Since <math>\operatorname{int}_Y B</math> is open. and <math>f</math> is continuous, <math>f^{-1}(\operatorname{int}_Y B)</math> is open in <math>X.</math> As <math>\operatorname{int}_Y B \subseteq B,</math> we have <math>f^{-1}(\operatorname{int}_Y B) \subseteq f^{-1}(B).</math> By the definition of the interior, <math>\operatorname{int}_X\left(f^{-1}(B)\right)</math> is the largest open set contained in <math>f^{-1}(B).</math> Hence <math>f^{-1}(\operatorname{int}_Y B) \subseteq \operatorname{int}_X\left(f^{-1}(B)\right).</math> '''ii β iii'''.{{spaces|en}} Fix <math>A\subseteq X</math> and let <math>x\in\operatorname{cl}_X A.</math> Suppose to the contrary that <math>f(x)\notin\operatorname{cl}_Y\left(f(A)\right),</math> then we may find some open neighbourhood <math>V</math> of <math>f(x)</math> that is disjoint from <math>\operatorname{cl}_Y\left(f(A)\right)</math>. By '''ii''', <math>f^{-1}(V) = f^{-1}(\operatorname{int}_Y V) \subseteq \operatorname{int}_X \left(f^{-1}(V)\right),</math> hence <math>f^{-1}(V)</math> is open. Then we have found an open neighbourhood of <math>x</math> that does not intersect <math>\operatorname{cl}_X A</math>, contradicting the fact that <math>x\in\operatorname{cl}_X A.</math> Hence <math>f\left(\operatorname{cl}_X A\right) \subseteq \operatorname{cl}_Y \left(f(A)\right).</math> '''iii β i'''.{{spaces|en}} Let <math>N\subseteq Y</math> be closed. Let <math>M = f^{-1}(N)</math> be the preimage of <math>N.</math> By '''iii''', we have <math>f\left(\operatorname{cl}_X M\right) \subseteq \operatorname{cl}_Y \left(f(M)\right).</math> Since <math>f(M) = f(f^{-1}(N)) \subseteq N,</math> we have further that <math>f\left(\operatorname{cl}_X M\right) \subseteq \operatorname{cl}_Y N = N.</math> Thus <math>\operatorname{cl}_X M \subseteq f^{-1}\left(f(\operatorname{cl}_X M)\right) \subseteq f^{-1}(N) = M.</math> Hence <math>M</math> is closed and we are done. {{collapse bottom}} If we declare that a point <math>x</math> is {{em|close to}} a subset <math>A \subseteq X</math> if <math>x \in \operatorname{cl}_X A,</math> then this terminology allows for a [[plain English]] description of continuity: <math>f</math> is continuous if and only if for every subset <math>A \subseteq X,</math> <math>f</math> maps points that are close to <math>A</math> to points that are close to <math>f(A).</math> Similarly, <math>f</math> is continuous at a fixed given point <math>x \in X</math> if and only if whenever <math>x</math> is close to a subset <math>A \subseteq X,</math> then <math>f(x)</math> is close to <math>f(A).</math> Instead of specifying topological spaces by their [[Open set|open subsets]], any topology on <math>X</math> can [[Equivalence of categories|alternatively be determined]] by a [[Kuratowski closure operator|closure operator]] or by an [[interior operator]]. Specifically, the map that sends a subset <math>A</math> of a topological space <math>X</math> to its [[Closure (topology)|topological closure]] <math>\operatorname{cl}_X A</math> satisfies the [[Kuratowski closure axioms]]. Conversely, for any [[Kuratowski closure operator|closure operator]] <math>A \mapsto \operatorname{cl} A</math> there exists a unique topology <math>\tau</math> on <math>X</math> (specifically, <math>\tau := \{ X \setminus \operatorname{cl} A : A \subseteq X \}</math>) such that for every subset <math>A \subseteq X,</math> <math>\operatorname{cl} A</math> is equal to the topological closure <math>\operatorname{cl}_{(X, \tau)} A</math> of <math>A</math> in <math>(X, \tau).</math> If the sets <math>X</math> and <math>Y</math> are each associated with closure operators (both denoted by <math>\operatorname{cl}</math>) then a map <math>f : X \to Y</math> is continuous if and only if <math>f(\operatorname{cl} A) \subseteq \operatorname{cl} (f(A))</math> for every subset <math>A \subseteq X.</math> Similarly, the map that sends a subset <math>A</math> of <math>X</math> to its [[Interior (topology)|topological interior]] <math>\operatorname{int}_X A</math> defines an [[interior operator]]. Conversely, any interior operator <math>A \mapsto \operatorname{int} A</math> induces a unique topology <math>\tau</math> on <math>X</math> (specifically, <math>\tau := \{ \operatorname{int} A : A \subseteq X \}</math>) such that for every <math>A \subseteq X,</math> <math>\operatorname{int} A</math> is equal to the topological interior <math>\operatorname{int}_{(X, \tau)} A</math> of <math>A</math> in <math>(X, \tau).</math> If the sets <math>X</math> and <math>Y</math> are each associated with interior operators (both denoted by <math>\operatorname{int}</math>) then a map <math>f : X \to Y</math> is continuous if and only if <math>f^{-1}(\operatorname{int} B) \subseteq \operatorname{int}\left(f^{-1}(B)\right)</math> for every subset <math>B \subseteq Y.</math><ref>{{cite web|title=general topology - Continuity and interior|url=https://math.stackexchange.com/q/1209229|website=Mathematics Stack Exchange}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Continuous function
(section)
Add topic