Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Binomial coefficient
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Bounds and asymptotic formulas == The following bounds for <math>\tbinom n k</math> hold for all values of ''n'' and ''k'' such that {{math|1 ≤ ''k'' ≤ ''n''}}: <math display="block">\frac{n^k}{k^k} \le {n \choose k} \le \frac{n^k}{k!} < \left(\frac{n\cdot e}{k}\right)^k.</math> The first inequality follows from the fact that <math display="block"> {n \choose k} = \frac{n}{k} \cdot \frac{n-1}{k-1} \cdots \frac{n-(k-1)}{1} </math> and each of these <math>k </math> terms in this product is <math display="inline"> \geq \frac{n}{k} </math>. A similar argument can be made to show the second inequality. The final strict inequality is equivalent to <math display="inline">e^k > k^k / k!</math>, that is clear since the RHS is a term of the exponential series <math display="inline"> e^k = \sum_{j=0}^\infty k^j/j! </math>. From the divisibility properties we can infer that <math display="block">\frac{\operatorname{lcm}(n-k, \ldots, n)}{(n-k) \cdot \operatorname{lcm}\left(\binom{k}{0}, \ldots, \binom{k}{k}\right)}\leq\binom{n}{k} \leq \frac{\operatorname{lcm}(n-k, \ldots, n)}{n - k},</math> where both equalities can be achieved.<ref name="Farhi2007" /> The following bounds are useful in information theory:<ref name=cover2006>{{cite book |author1=Thomas M. Cover |author2=Joy A. Thomas |title=Elements of Information Theory |date=18 July 2006 |publisher=Wiley |location=Hoboken, New Jersey |isbn=0-471-24195-4}}</ref>{{rp|353}} <math display="block"> \frac{1}{n+1} 2^{nH(k/n)} \leq {n \choose k} \leq 2^{nH(k/n)} </math> where <math>H(p) = -p\log_2(p) -(1-p)\log_2(1-p)</math> is the [[binary entropy function]]. It can be further tightened to <math display="block"> \sqrt{\frac{n}{8k(n-k)}} 2^{nH(k/n)} \leq {n \choose k} \leq \sqrt{\frac{n}{2\pi k(n-k)}} 2^{nH(k/n)}</math> for all <math>1 \leq k \leq n-1</math>.<ref name=macwilliams1977>{{cite book |author1=F. J. MacWilliams |author2=N. J. A. Sloane |title=The Theory of Error-Correcting Codes |volume=16 |edition=3rd |year=1981 |publisher=North-Holland |isbn=0-444-85009-0}}</ref>{{rp|309}} === Both ''n'' and ''k'' large === [[Stirling's approximation]] yields the following approximation, valid when <math>n-k,k</math> both tend to infinity: <math display="block">{n \choose k} \sim \sqrt{n\over 2\pi k (n-k)} \cdot {n^n \over k^k (n-k)^{n-k}} </math> Because the inequality forms of Stirling's formula also bound the factorials, slight variants on the above asymptotic approximation give exact bounds. In particular, when <math>n</math> is sufficiently large, one has <math display="block"> {2n \choose n} \sim \frac{2^{2n}}{\sqrt{n\pi }}</math> and <math>\sqrt{n}{2n \choose n} \ge 2^{2n-1}</math>. More generally, for {{math|''m'' ≥ 2}} and {{math|''n'' ≥ 1}} (again, by applying Stirling's formula to the factorials in the binomial coefficient), <math display="block">\sqrt{n}{mn \choose n} \ge \frac{m^{m(n-1)+1}}{(m-1)^{(m-1)(n-1)}}.</math> If ''n'' is large and ''k'' is linear in ''n'', various precise asymptotic estimates exist for the binomial coefficient <math display="inline"> \binom{n}{k}</math>. For example, if <math>| n/2 - k | = o(n^{2/3})</math> then <math display="block"> \binom{n}{k} \sim \binom{n}{\frac{n}{2}} e^{-d^2/(2n)} \sim \frac{2^n}{\sqrt{\frac{1}{2}n \pi }} e^{-d^2/(2n)}</math> where ''d'' = ''n'' − 2''k''.<ref>{{cite book|title=Asymptopia|last1=Spencer|first1=Joel|last2=Florescu|first2=Laura|date=2014| publisher=[[American Mathematical Society|AMS]]|isbn=978-1-4704-0904-3|series=Student mathematical library|volume=71|page=66| oclc=865574788|author1-link=Joel Spencer}}</ref> === {{mvar|n}} much larger than {{mvar|k}} === If {{mvar|n}} is large and {{mvar|k}} is {{math|''o''(''n'')}} (that is, if {{math| ''k''/''n'' → 0}}), then <math display = block> \binom{n}{k} \sim \left(\frac{n e}{k} \right)^k \cdot (2\pi k)^{-1/2} \cdot \exp\left(- \frac{k^2}{2n}(1 + o(1))\right)</math> where again {{mvar|o}} is the [[little o notation]].<ref>{{cite book|title=Asymptopia|last1=Spencer|first1=Joel| last2=Florescu|first2=Laura|date=2014|publisher=[[American Mathematical Society|AMS]]|isbn=978-1-4704-0904-3|series=Student mathematical library|volume=71|page=59|oclc=865574788|author1-link=Joel Spencer}}</ref> === Sums of binomial coefficients === A simple and rough upper bound for the sum of binomial coefficients can be obtained using the [[binomial theorem]]: <math display="block">\sum_{i=0}^k {n \choose i} \leq \sum_{i=0}^k n^i\cdot 1^{k-i} \leq (1+n)^k</math> More precise bounds are given by <math display="block">\frac{1}{\sqrt{8n\varepsilon(1-\varepsilon)}} \cdot 2^{H(\varepsilon) \cdot n} \leq \sum_{i=0}^{k} \binom{n}{i} \leq 2^{H(\varepsilon) \cdot n},</math> valid for all integers <math>n > k \geq 1</math> with <math>\varepsilon \doteq k/n \leq 1/2</math>.<ref>see e.g. {{harvtxt|Ash|1990|p=121}} or {{harvtxt|Flum|Grohe|2006|p=427}}.</ref> === Generalized binomial coefficients === The [[Gamma function#Euler's definition as an infinite product|infinite product formula for the gamma function]] also gives an expression for binomial coefficients <math display="block">(-1)^k {z \choose k}= {-z+k-1 \choose k} = \frac{1}{\Gamma(-z)} \frac{1}{(k+1)^{z+1}} \prod_{j=k+1} \frac{\left(1+\frac{1}{j}\right)^{-z-1}}{1-\frac{z+1}{j}}</math> which yields the asymptotic formulas <math display="block">{z \choose k} \approx \frac{(-1)^k}{\Gamma(-z) k^{z+1}} \qquad \text{and} \qquad {z+k \choose k} = \frac{k^z}{\Gamma(z+1)}\left( 1+\frac{z(z+1)}{2k}+\mathcal{O}\left(k^{-2}\right)\right)</math> as <math>k \to \infty</math>. This asymptotic behaviour is contained in the approximation <math display="block">{z+k \choose k}\approx \frac{e^{z(H_k-\gamma)}}{\Gamma(z+1)}</math> as well. (Here <math>H_k</math> is the ''k''-th [[harmonic number]] and <math>\gamma</math> is the [[Euler–Mascheroni constant]].) Further, the asymptotic formula <math display="block">\frac{{z+k\choose j}}{{k\choose j}}\to \left(1-\frac{j}{k}\right)^{-z}\quad\text{and}\quad \frac{{j\choose j-k}}{{j-z\choose j-k}}\to \left(\frac{j}{k}\right)^z</math> hold true, whenever <math>k\to\infty</math> and <math>j/k \to x</math> for some complex number <math>x</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Binomial coefficient
(section)
Add topic