Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Binary search
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Noisy binary search === [[File:Noisy binary search.svg|thumb|right|In noisy binary search, there is a certain probability that a comparison is incorrect.]] Noisy binary search algorithms solve the case where the algorithm cannot reliably compare elements of the array. For each pair of elements, there is a certain probability that the algorithm makes the wrong comparison. Noisy binary search can find the correct position of the target with a given probability that controls the reliability of the yielded position. Every noisy binary search procedure must make at least <math>(1 - \tau)\frac{\log_2 (n)}{H(p)} - \frac{10}{H(p)}</math> comparisons on average, where <math>H(p) = -p \log_2 (p) - (1 - p) \log_2 (1 - p)</math><!-- Attribution of LaTeX code: see history of https://en.wikipedia.org/wiki/Binary_entropy_function --> is the [[binary entropy function]] and <math>\tau</math> is the probability that the procedure yields the wrong position.<ref>{{cite conference |last1=Ben-Or |first1=Michael |last2=Hassidim |first2=Avinatan |title=The Bayesian learner is optimal for noisy binary search (and pretty good for quantum as well) |date=2008 |book-title=49th [[Annual IEEE Symposium on Foundations of Computer Science|Symposium on Foundations of Computer Science]] |pages=221–230 |doi=10.1109/FOCS.2008.58 |url=http://www2.lns.mit.edu/~avinatan/research/search-full.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www2.lns.mit.edu/~avinatan/research/search-full.pdf |archive-date=2022-10-09 |url-status=live |isbn=978-0-7695-3436-7}}</ref><ref name="pelc1989">{{cite journal|last1=Pelc|first1=Andrzej|title=Searching with known error probability|journal=Theoretical Computer Science|date=1989|volume=63|issue=2|pages=185–202|doi=10.1016/0304-3975(89)90077-7|doi-access=free}}</ref><ref>{{cite conference|last1=Rivest|first1=Ronald L.|last2=Meyer|first2=Albert R.|last3=Kleitman|first3=Daniel J.|last4=Winklmann|first4=K.|author-link1=Ronald Rivest|author-link2=Albert R. Meyer|author-link3=Daniel Kleitman|title=Coping with errors in binary search procedures|conference=10th [[Symposium on Theory of Computing|ACM Symposium on Theory of Computing]]|doi=10.1145/800133.804351|doi-access=free}}</ref> The noisy binary search problem can be considered as a case of the [[Ulam's game|Rényi-Ulam game]],<ref>{{cite journal|last1=Pelc|first1=Andrzej|title=Searching games with errors—fifty years of coping with liars|journal=Theoretical Computer Science|date=2002|volume=270|issue=1–2|pages=71–109|doi=10.1016/S0304-3975(01)00303-6|doi-access=free}}</ref> a variant of [[Twenty Questions]] where the answers may be wrong.<ref>{{Cite journal | last1=Rényi | first1=Alfréd | title=On a problem in information theory | language=hu | mr=0143666 | year=1961 | journal=Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei| volume=6 | pages=505–516}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Binary search
(section)
Add topic