Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Aluminium
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Environmental effects== [[File:Luftaufnahmen Nordseekueste 2012-05-by-RaBoe-478.jpg|thumb|upright=1.0|"[[Bauxite tailings]]" storage facility in [[Stade]], Germany. The aluminium industry generates about 70 million tons of this waste annually.]] High levels of aluminium occur near mining sites; small amounts of aluminium are released to the environment at coal-fired power plants or [[Incineration|incinerators]].<ref name="atsdr"/> Aluminium in the air is washed out by the rain or normally settles down but small particles of aluminium remain in the air for a long time.<ref name="atsdr" /> Acidic [[precipitation]] is the main natural factor to mobilize aluminium from natural sources<ref name="Piero3" /> and the main reason for the environmental effects of aluminium;<ref name="RosselandEldhuset1990">{{cite journal|last1=Rosseland|first1=B.O.|last2=Eldhuset|first2=T.D.|last3=Staurnes|first3=M.|year=1990|title=Environmental effects of aluminium|journal=Environmental Geochemistry and Health|volume=12|issue=1–2|pages=17–27|doi=10.1007/BF01734045|pmid=24202562|bibcode=1990EnvGH..12...17R |s2cid=23714684|issn=0269-4042}}</ref> however, the main factor of presence of aluminium in salt and freshwater are the industrial processes that also release aluminium into air.<ref name="Piero3" /> In water, aluminium acts as a toxiс agent on [[gill]]-breathing animals such as [[fish]] when the water is acidic, in which aluminium may precipitate on gills,<ref>{{Cite journal|last1=Baker|first1=Joan P.|last2=Schofield|first2=Carl L.|date=1982|title=Aluminum toxicity to fish in acidic waters|url=http://link.springer.com/10.1007/BF02419419|journal=Water, Air, and Soil Pollution|language=en|volume=18|issue=1–3|pages=289–309|doi=10.1007/BF02419419|bibcode=1982WASP...18..289B|s2cid=98363768|issn=0049-6979|access-date=27 December 2020|archive-date=11 June 2021|archive-url=https://web.archive.org/web/20210611060738/https://link.springer.com/article/10.1007/BF02419419|url-status=live}}</ref> which causes loss of [[Blood plasma|plasma]]- and [[hemolymph]] ions leading to [[Osmoregulation|osmoregulatory]] failure.<ref name="RosselandEldhuset1990" /> Organic complexes of aluminium may be easily absorbed and interfere with metabolism in mammals and birds, even though this rarely happens in practice.<ref name="RosselandEldhuset1990" /> Aluminium is primary among the factors that reduce plant growth on acidic soils. Although it is generally harmless to plant growth in pH-neutral soils, in acid soils the concentration of toxic Al<sup>3+</sup> [[cation]]s increases and disturbs root growth and function.<ref>{{cite journal |title=Effect of aluminum on δ-aminolevulinic acid dehydratase (ALA-D) and the development of cucumber (''Cucumis sativus'') |first1=Luciane|last1=Belmonte Pereira |first2=Luciane|last2=Aimed Tabaldi |first3=Jamile|last3=Fabbrin Gonçalves |first4=Gladis Oliveira|last4=Jucoski |first5=Mareni Maria|last5=Pauletto |first6=Simone|last6=Nardin Weis |first7=Fernando|last7=Texeira Nicoloso |first8=Denise|last8= Brother |first9=João|last9=Batista Teixeira Rocha |first10=Maria Rosa Chitolina|last10=Chitolina Schetinger |journal=Environmental and Experimental Botany|volume=57|issue=1–2|pages=106–115|date=2006|doi = 10.1016/j.envexpbot.2005.05.004|bibcode=2006EnvEB..57..106P }} </ref><ref>{{cite journal |title=Toxicity and tolerance of aluminium in vascular plants|first=Maud|last=Andersson |journal=Water, Air, & Soil Pollution|volume=39|issue=3–4|pages=439–462|date=1988 |url=https://link.springer.com/article/10.1007/BF00279487|url-status=live |doi=10.1007/BF00279487|bibcode=1988WASP...39..439A|s2cid=82896081|access-date=28 February 2020 |archive-date=28 February 2020|archive-url=https://web.archive.org/web/20200228160931/https://link.springer.com/article/10.1007/BF00279487}} </ref><ref>{{cite journal |title=The role of the apoplast in aluminium toxicity and resistance of higher plants: A review |first=Walter J.|last=Horst |journal=Zeitschrift für Pflanzenernährung und Bodenkunde|volume=158|issue=5|pages=419–428|date=1995|doi=10.1002/jpln.19951580503}} </ref><ref>{{cite journal |title = Aluminium tolerance in plants and the complexing role of organic acids |first1 = Jian Feng |last1 = Ma |journal = Trends in Plant Science |volume = 6 |issue = 6 |pages = 273–278 |date = 2001 |doi = 10.1016/S1360-1385(01)01961-6 |pmid = 11378470 |last2 = Ryan |first2 = P.R. |last3 = Delhaize |first3 = E.|bibcode = 2001TPS.....6..273M }} </ref> [[Wheat]] has [[adaptation|developed]] a tolerance to aluminium, releasing [[organic compound]]s that bind to harmful aluminium [[cations]]. [[Sorghum]] is believed to have the same tolerance mechanism.<ref>{{cite journal |title = Comparative Mapping of a Major Aluminum Tolerance Gene in Sorghum and Other Species in the Poaceae |first8 = L.V.|last8 = Kochian |first7 = L.|last7 = Li |first6 = R.E.|last6 = Schaffert |first5 = P.E.|last5 = Klein |first4 = M.E.|last4 = Sorrells|first3 = Y.|last3 = Wang|first2 = D.F.|last2 = Garvin|author = Magalhaes, J.V. |journal = Genetics|volume = 167| issue = 4|date = 2004|pmid = 15342528|pmc = 1471010|doi = 10.1534/genetics.103.023580|pages = 1905–1914}}</ref> Aluminium production possesses its own challenges to the environment on each step of the production process. The major challenge is the [[greenhouse gas emissions|emission of greenhouse gases]]. These gases result from electrical consumption of the smelters and the byproducts of processing.<ref>{{Cite journal |last1=Saevarsdottir |first1=Gudrun |last2=Kvande |first2=Halvor |last3=Welch |first3=Barry J. |date=2020 |title=Aluminum Production in the Times of Climate Change: The Global Challenge to Reduce the Carbon Footprint and Prevent Carbon Leakage |url=http://link.springer.com/10.1007/s11837-019-03918-6 |journal=JOM |language=en |volume=72 |issue=1 |pages=296–308 |doi=10.1007/s11837-019-03918-6 |issn=1047-4838}}</ref> The most potent of these gases are [[Fluorocarbon|perfluorocarbons]], namely CF<sub>4</sub> and C<sub>2</sub>F<sub>6</sub>, from the smelting process.<ref>{{Cite journal |last=Abrahamson |first=Dean |date=1992 |title=Aluminium and global warming |url=https://www.nature.com/articles/356484a0 |journal=Nature |language=en |volume=356 |issue=6369 |pages=484 |doi=10.1038/356484a0 |bibcode=1992Natur.356..484A |issn=0028-0836}}</ref> Biodegradation of metallic aluminium is extremely rare; most aluminium-corroding organisms do not directly attack or consume the aluminium, but instead produce corrosive wastes.<ref>{{cite web|publisher=Duncan Aviation |title=Fuel System Contamination & Starvation |date=2011 |url=http://www.duncanaviation.aero/intelligence/201102/fuel_starvation_system_contamination.php |url-status=dead|archive-url=https://web.archive.org/web/20150225051128/http://www.duncanaviation.aero/intelligence/201102/fuel_starvation_system_contamination.php |archive-date=25 February 2015 }}</ref><ref>{{cite journal|quote=A ''Geotrichum''-type arthroconidial fungus was isolated by the authors from a deteriorated compact disc found in Belize (Central America)....In the present paper, we report the purification and characterization of an H<sub>2</sub>O<sub>2</sub>-generating extracellular oxidase produced by this fungus, which shares catalytic properties with both ''P. eryngii'' AAO and ''P. simplicissimum'' VAO.|volume=Proteins and Proteomics 1794|issue=4|date=April 2009|pages=689–697|title=New oxidase from ''Bjerkandera'' arthroconidial anamorph that oxidizes both phenolic and nonphenolic benzyl alcohols|first1=Elvira|last1=Romero|first2=Patricia|last2=Ferreira|first3=Ángel T.|last3=Martínez|first4=María|last4=Jesús Martínez|journal=Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics |doi=10.1016/j.bbapap.2008.11.013|pmid=19110079 }} See also the abstract of {{harvnb|Romero|Speranza|García-Guinea|Martínez|2007}}.</ref> The fungus ''[[Geotrichum candidum]]'' can consume the aluminium in [[compact disc]]s.<ref>{{Cite journal|doi=10.1038/news010628-11 |author=Bosch, Xavier |title=Fungus eats CD |date=27 June 2001 |journal=Nature |pages=news010628–11 |url=http://www.nature.com/news/2001/010627/full/news010628-11.html |url-status=live|archive-url=https://web.archive.org/web/20101231163222/http://www.nature.com/news/2001/010627/full/news010628-11.html |archive-date=31 December 2010 }}</ref><ref>{{cite journal|journal=Naturwissenschaften|year=2001|volume=88|pages=351–354|doi=10.1007/s001140100249|department=Short Communication|first1=Javier|last1=Garcia-Guinea|first2=Victor|last2=Cárdenes|first3=Angel T.|last3=Martínez|first4=Maria|last4=Jesús Martínez|title=Fungal bioturbation paths in a compact disk|issue=8 |pmid=11572018 |bibcode=2001NW.....88..351G |s2cid=7599290 }}</ref><ref>{{cite journal|title=An anamorph of the white-rot fungus ''Bjerkandera adusta'' capable of colonizing and degrading compact disc components|first1=Elvira|last1=Romero|first2=Mariela|last2=Speranza|first3=Javier|last3=García-Guinea|first4=Ángel T.|last4=Martínez|first5=María|last5=Jesús Martínez|date=8 August 2007|doi=10.1111/j.1574-6968.2007.00876.x|editor-first=Bernard|editor-last=Prior|journal=FEMS Microbiol Lett|volume=275|issue=1 |pages=122–129|publisher=Blackwell Publishing Ltd.|pmid=17854471 |doi-access=free|hdl=10261/47650|hdl-access=free}}</ref> The bacterium ''[[Pseudomonas aeruginosa]]'' and the fungus ''[[Cladosporium resinae]]'' are commonly detected in aircraft fuel tanks that use [[kerosene]]-based fuels (not [[avgas]]), and laboratory cultures can degrade aluminium.<ref>{{cite journal |url=http://nzetc.victoria.ac.nz/tm/scholarly/tei-Bio19Tuat01-t1-body-d4.html |journal=Tuatara |title=Studies on the "Kerosene Fungus" ''Cladosporium resinae'' (Lindau) De Vries: Part I. The Problem of Microbial Contamination of Aviation Fuels |page=29 |author1=Sheridan, J.E. |author2=Nelson, Jan |author3=Tan, Y.L. |volume=19 |issue=1 |url-status=live|archive-url=https://web.archive.org/web/20131213140543/http://nzetc.victoria.ac.nz/tm/scholarly/tei-Bio19Tuat01-t1-body-d4.html |archive-date=13 December 2013 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Aluminium
(section)
Add topic