Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Action potential
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Plant action potentials=== {{See also|Variation potential}} [[Plant cells|Plant]] and [[fungi|fungal cells]]<ref name="Slayman_1976" group=lower-alpha>{{cite journal | vauthors = Slayman CL, Long WS, Gradmann D | title = "Action potentials" in Neurospora crassa, a mycelial fungus | journal = Biochimica et Biophysica Acta (BBA) - Biomembranes | volume = 426 | issue = 4 | pages = 732β44 | date = April 1976 | pmid = 130926 | doi = 10.1016/0005-2736(76)90138-3 }}</ref> are also electrically excitable. The fundamental difference from animal action potentials is that the depolarization in plant cells is not accomplished by an uptake of positive sodium ions, but by release of negative ''chloride'' ions.<ref name = "Mummert_1991" group=lower-alpha>{{cite journal | vauthors = Mummert H, Gradmann D | title = Action potentials in Acetabularia: measurement and simulation of voltage-gated fluxes | journal = The Journal of Membrane Biology | volume = 124 | issue = 3 | pages = 265β73 | date = December 1991 | pmid = 1664861 | doi = 10.1007/BF01994359 | s2cid = 22063907 }}</ref><ref name = "Gradmann_2001" group=lower-alpha>{{cite journal | vauthors = Gradmann D | year = 2001 | title = Models for oscillations in plants | journal = Aust. J. Plant Physiol. | volume = 28 | issue = 7 | pages = 577β590 | doi = 10.1071/pp01017}}</ref><ref name = "Beilby_2007" group=lower-alpha>{{cite book | vauthors = Beilby MJ | title = Action Potential in Charophytes | volume = 257 | pages = 43β82 | year = 2007 | pmid = 17280895 | doi = 10.1016/S0074-7696(07)57002-6 | isbn = 978-0-12-373701-4 | series = International Review of Cytology }}</ref> In 1906, J. C. Bose published the first measurements of action potentials in plants, which had previously been discovered by Burdon-Sanderson and Darwin.<ref>{{Cite journal|last=Tandon|first=Prakash N|date=2019-07-01|title=Jagdish Chandra Bose and Plant Neurobiology: Part I|url=http://insa.nic.in/writereaddata/UpLoadedFiles/IJHS/Vol54_2_2019__Art05.pdf|journal=Indian Journal of History of Science|volume=54|issue=2|doi=10.16943/ijhs/2019/v54i2/49660|issn=0019-5235|doi-access=free}}</ref> An increase in cytoplasmic calcium ions may be the cause of anion release into the cell. This makes calcium a precursor to ion movements, such as the influx of negative chloride ions and efflux of positive potassium ions, as seen in barley leaves.<ref>{{cite journal | vauthors = Felle HH, Zimmermann MR | title = Systemic signalling in barley through action potentials | journal = Planta | volume = 226 | issue = 1 | pages = 203β14 | date = June 2007 | pmid = 17226028 | doi = 10.1007/s00425-006-0458-y | bibcode = 2007Plant.226..203F | s2cid = 5059716 }}</ref> The initial influx of calcium ions also poses a small cellular depolarization, causing the voltage-gated ion channels to open and allowing full depolarization to be propagated by chloride ions. Some plants (e.g. ''[[Dionaea muscipula]]'') use sodium-gated channels to operate plant movements and "count" stimulation events to determine if a threshold for movement is met. ''Dionaea muscipula'', also known as the Venus flytrap, is found in subtropical wetlands in North and South Carolina.<ref>{{Cite journal|last=Luken|first=James O. | name-list-style = vanc |date= December 2005 |title=Habitats of Dionaea muscipula (Venus' Fly Trap), Droseraceae, Associated with Carolina Bays|journal=Southeastern Naturalist|language=en|volume=4|issue=4|pages=573β584|doi=10.1656/1528-7092(2005)004[0573:HODMVF]2.0.CO;2|s2cid=9246114 |issn=1528-7092}}</ref> When there are poor soil nutrients, the flytrap relies on a diet of insects and animals.<ref name=":1">{{cite journal | vauthors = BΓΆhm J, Scherzer S, Krol E, Kreuzer I, von Meyer K, Lorey C, Mueller TD, Shabala L, Monte I, Solano R, Al-Rasheid KA, Rennenberg H, Shabala S, Neher E, Hedrich R | display-authors = 6 | title = The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake | journal = Current Biology | volume = 26 | issue = 3 | pages = 286β95 | date = February 2016 | pmid = 26804557 | pmc = 4751343 | doi = 10.1016/j.cub.2015.11.057 | bibcode = 2016CBio...26..286B }}</ref> Despite research on the plant, there lacks an understanding behind the molecular basis to the Venus flytraps, and carnivore plants in general.<ref name=":2">{{cite journal | vauthors = Hedrich R, Neher E | title = Venus Flytrap: How an Excitable, Carnivorous Plant Works | journal = Trends in Plant Science | volume = 23 | issue = 3 | pages = 220β234 | date = March 2018 | pmid = 29336976 | doi = 10.1016/j.tplants.2017.12.004 | bibcode = 2018TPS....23..220H }}</ref> However, plenty of research has been done on action potentials and how they affect movement and clockwork within the Venus flytrap. To start, the resting membrane potential of the Venus flytrap (β120 mV) is lower than animal cells (usually β90 mV to β40 mV).<ref name=":2" /><ref>Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001. Electrical Potentials Across Nerve Cell Membranes. Available from: [https://www.ncbi.nlm.nih.gov/books/NBK11069/]</ref> The lower resting potential makes it easier to activate an action potential. Thus, when an insect lands on the trap of the plant, it triggers a hair-like mechanoreceptor.<ref name=":2" /> This receptor then activates an action potential that lasts around 1.5 ms.<ref>{{cite journal | vauthors = Volkov AG, Adesina T, Jovanov E | title = Closing of venus flytrap by electrical stimulation of motor cells | journal = Plant Signaling & Behavior | volume = 2 | issue = 3 | pages = 139β45 | date = May 2007 | pmid = 19516982 | pmc = 2634039 | doi = 10.4161/psb.2.3.4217 | bibcode = 2007PlSiB...2..139V }}</ref> This causes an increase of positive calcium ions into the cell, slightly depolarizing it. However, the flytrap does not close after one trigger. Instead, it requires the activation of two or more hairs.<ref name=":1" /><ref name=":2" /> If only one hair is triggered, it disregards the activation as a false positive. Further, the second hair must be activated within a certain time interval (0.75β40 s) for it to register with the first activation.<ref name=":2" /> Thus, a buildup of calcium begins and then slowly falls after the first trigger. When the second action potential is fired within the time interval, it reaches the calcium threshold to depolarize the cell, closing the trap on the prey within a fraction of a second.<ref name=":2" /> Together with the subsequent release of positive potassium ions the action potential in plants involves an [[osmotic]] loss of salt (KCl). Whereas, the animal action potential is osmotically neutral because equal amounts of entering sodium and leaving potassium cancel each other osmotically. The interaction of electrical and osmotic relations in plant cells<ref name="Gradmann_1998" group="lower-alpha">{{cite journal | vauthors = Gradmann D, Hoffstadt J | title = Electrocoupling of ion transporters in plants: interaction with internal ion concentrations | journal = The Journal of Membrane Biology | volume = 166 | issue = 1 | pages = 51β9 | date = November 1998 | pmid = 9784585 | doi = 10.1007/s002329900446 | s2cid = 24190001 }}</ref> appears to have arisen from an osmotic function of electrical excitability in a common unicellular ancestors of plants and animals under changing salinity conditions. Further, the present function of rapid signal transmission is seen as a newer accomplishment of [[metazoan]] cells in a more stable osmotic environment.<ref name="Gradmann_1980"> Gradmann, D; Mummert, H in {{harvnb|Spanswick|Lucas|Dainty|1980|loc=''Plant action potentials'', pp. 333β344.}}</ref> It is likely that the familiar signaling function of action potentials in some vascular plants (e.g. ''[[Mimosa pudica]]'') arose independently from that in metazoan excitable cells. Unlike the rising phase and peak, the falling phase and after-hyperpolarization seem to depend primarily on cations that are not calcium. To initiate repolarization, the cell requires movement of potassium out of the cell through passive transportation on the membrane. This differs from neurons because the movement of potassium does not dominate the decrease in membrane potential. To fully repolarize, a plant cell requires energy in the form of ATP to assist in the release of hydrogen from the cell β utilizing a transporter called [[proton ATPase]].<ref name="Opritov">Opritov, V A, et al. "Direct Coupling of Action Potential Generation in Cells of a Higher Plant (Cucurbita Pepo) with the Operation of an Electrogenic Pump." ''Russian Journal of Plant Physiology'', vol. 49, no. 1, 2002, pp. 142β147.</ref><ref name=":2" />
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Action potential
(section)
Add topic