Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Weighted arithmetic mean
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Exponentially decreasing weights=== {{see also|Exponentially weighted moving average}} In the scenario described in the previous section, most frequently the decrease in interaction strength obeys a negative exponential law. If the observations are sampled at equidistant times, then exponential decrease is equivalent to decrease by a constant fraction <math>0<\Delta<1</math> at each time step. Setting <math>w=1-\Delta</math> we can define <math>m</math> normalized weights by : <math>w_i=\frac {w^{i-1}}{V_1},</math> where <math>V_1</math> is the sum of the unnormalized weights. In this case <math>V_1</math> is simply : <math>V_1=\sum_{i=1}^m{w^{i-1}} = \frac {1-w^{m}}{1-w},</math> approaching <math>V_1=1/(1-w)</math> for large values of <math>m</math>. The damping constant <math>w</math> must correspond to the actual decrease of interaction strength. If this cannot be determined from theoretical considerations, then the following properties of exponentially decreasing weights are useful in making a suitable choice: at step <math>(1-w)^{-1}</math>, the weight approximately equals <math>{e^{-1}}(1-w)=0.39(1-w)</math>, the tail area the value <math>e^{-1}</math>, the head area <math>{1-e^{-1}}=0.61</math>. The tail area at step <math>n</math> is <math>\le {e^{-n(1-w)}}</math>. Where primarily the closest <math>n</math> observations matter and the effect of the remaining observations can be ignored safely, then choose <math>w</math> such that the tail area is sufficiently small.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Weighted arithmetic mean
(section)
Add topic