Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Reed–Solomon error correction
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Example ==== Consider the Reed–Solomon code defined in {{math|''GF''(929)}} with {{math|''α'' {{=}} 3}} and {{math|''t'' {{=}} 4}} (this is used in [[PDF417]] barcodes) for a RS(7,3) code. The generator polynomial is <math display="block"> g(x) = (x - 3)(x - 3^2)(x - 3^3)(x - 3^4) = x^4 + 809 x^3 + 723 x^2 + 568 x + 522. </math> If the message polynomial is {{math|''p''(''x'') {{=}} 3 ''x''<sup>2</sup> + 2 ''x'' + 1}}, then a systematic codeword is encoded as follows: <math display="block"> s_r(x) = p(x) \, x^t \bmod g(x) = 547 x^3 + 738 x^2 + 442 x + 455, </math> <math display="block"> s(x) = p(x) \, x^t - s_r(x) = 3 x^6 + 2 x^5 + 1 x^4 + 382 x^3 + 191 x^2 + 487 x + 474. </math> Errors in transmission might cause this to be received instead: <math display="block"> r(x) = s(x) + e(x) = 3 x^6 + 2 x^5 + 123 x^4 + 456 x^3 + 191 x^2 + 487 x + 474. </math> The syndromes are calculated by evaluating ''r'' at powers of ''α'': <math display="block"> S_1 = r(3^1) = 3 \cdot 3^6 + 2 \cdot 3^5 + 123 \cdot 3^4 + 456 \cdot 3^3 + 191 \cdot 3^2 + 487 \cdot 3 + 474 = 732, </math> <math display="block"> S_2 = r(3^2) = 637,\quad S_3 = r(3^3) = 762,\quad S_4 = r(3^4) = 925, </math> yielding the system <math display="block"> \begin{bmatrix} 732 & 637 \\ 637 & 762 \end{bmatrix} \begin{bmatrix} \Lambda_2 \\ \Lambda_1 \end{bmatrix} = \begin{bmatrix} -762 \\ -925 \end{bmatrix} = \begin{bmatrix} 167 \\ 004 \end{bmatrix}. </math> Using [[Gaussian elimination]], <math display="block"> \begin{bmatrix} 001 & 000 \\ 000 & 001 \end{bmatrix} \begin{bmatrix} \Lambda_2 \\ \Lambda_1 \end{bmatrix} = \begin{bmatrix} 329 \\ 821 \end{bmatrix}, </math> so <math display="block"> \Lambda(x) = 329 x^2 + 821 x + 001, </math> with roots ''x''<sub>1</sub> = 757 = 3<sup>−3</sup> and ''x''<sub>2</sub> = 562 = 3<sup>−4</sup>. The coefficients can be reversed: <math display="block"> R(x) = 001 x^2 + 821 x + 329, </math> to produce roots 27 = 3<sup>3</sup> and 81 = 3<sup>4</sup> with positive exponents, but typically this isn't used. The logarithm of the inverted roots corresponds to the error locations (right to left, location 0 is the last term in the codeword). To calculate the error values, apply the [[Forney algorithm]]: <math display="block"> \Omega(x) = S(x) \Lambda(x) \bmod x^4 = 546 x + 732, </math> <math display="block"> \Lambda'(x) = 658 x + 821, </math> <math display="block"> e_1 = -\Omega(x_1)/\Lambda'(x_1) = 074, </math> <math display="block"> e_2 = -\Omega(x_2)/\Lambda'(x_2) = 122. </math> Subtracting <math>e_1 x^3 + e_2 x^4 = 74x^3 + 122x^4</math> from the received polynomial ''r''(''x'') reproduces the original codeword ''s''.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Reed–Solomon error correction
(section)
Add topic