Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Normal distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===== Operations on two independent standard normal variables ===== If <math display=inline>X_1</math> and <math display=inline>X_2</math> are two independent standard normal random variables with mean 0 and variance 1, then * Their sum and difference is distributed normally with mean zero and variance two: <math display=inline>X_1 \pm X_2 \sim \mathcal{N}(0, 2)</math>. * Their product <math display=inline>Z = X_1 X_2</math> follows the [[product distribution#Independent central-normal distributions|product distribution]]<ref>{{cite web|url = http://mathworld.wolfram.com/NormalProductDistribution.html |title = Normal Product Distribution|work = MathWorld |publisher =wolfram.com| first = Eric W. |last = Weisstein}}</ref> with density function <math display=inline>f_Z(z) = \pi^{-1} K_0(|z|)</math> where <math display=inline>K_0</math> is the [[Macdonald function|modified Bessel function of the second kind]]. This distribution is symmetric around zero, unbounded at <math display=inline>z = 0</math>, and has the [[characteristic function (probability theory)|characteristic function]] <math display=inline>\phi_Z(t) = (1 + t^2)^{-1/2}</math>. * Their ratio follows the standard [[Cauchy distribution]]: <math display=inline>X_1/ X_2 \sim \operatorname{Cauchy}(0, 1)</math>. * Their Euclidean norm <math display=inline>\sqrt{X_1^2 + X_2^2}</math> has the [[Rayleigh distribution]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Normal distribution
(section)
Add topic