Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Markov chain
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Index of primitivity ==== The ''index of primitivity'', or ''exponent'', of a regular matrix, is the smallest <math>k</math> such that all entries of <math>M^k</math> are positive. The exponent is purely a graph-theoretic property, since it depends only on whether each entry of <math>M</math> is zero or positive, and therefore can be found on a directed graph with <math>\mathrm{sign}(M)</math> as its adjacency matrix. There are several combinatorial results about the exponent when there are finitely many states. Let <math>n</math> be the number of states, then<ref>{{Cite book |last=Seneta |first=E. (Eugene) |url=http://archive.org/details/nonnegativematri00esen_0 |title=Non-negative matrices; an introduction to theory and applications |date=1973 |publisher=New York, Wiley |others=Internet Archive |isbn=978-0-470-77605-6 |chapter=2.4. Combinatorial properties}}</ref> * The exponent is <math> \leq (n-1)^2 + 1 </math>. The only case where it is an equality is when the graph of <math>M</math> goes like <math>1 \to 2 \to \dots \to n \to 1 \text{ and } 2</math>. * If <math>M</math> has <math>k \geq 1</math> diagonal entries, then its exponent is <math>\leq 2n-k-1</math>. * If <math>\mathrm{sign}(M)</math> is symmetric, then <math>M^2</math> has positive diagonal entries, which by previous proposition means its exponent is <math>\leq 2n-2</math>. * (Dulmage-Mendelsohn theorem) The exponent is <math>\leq n+s(n-2)</math> where <math>s</math> is the [[Girth (graph theory)|girth of the graph]]. It can be improved to <math>\leq (d+1)+s(d+1-2)</math>, where <math>d</math> is the [[Diameter (graph theory)|diameter of the graph]].<ref>{{Cite journal |last=Shen |first=Jian |date=1996-10-15 |title=An improvement of the Dulmage-Mendelsohn theorem |journal=Discrete Mathematics |volume=158 |issue=1 |pages=295β297 |doi=10.1016/0012-365X(95)00060-A |doi-access=free }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Markov chain
(section)
Add topic