Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Magic square
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===For associative magic squares=== * An associative magic square remains associative when two rows or columns equidistant from the center are interchanged.<ref name="White-Assoc-Magic">{{cite web | url = https://budshaw.ca/Associative.html | title = Associative Magic Squares | website = budshaw.ca | first1 = S. Harry | last1 = White}}</ref><ref name="Hawley2011">{{cite web | url = https://nrich.maths.org/1338 | title = Magic Squares II | website = nrich.maths.org | first = Del | last = Hawley | publisher = University of Cambridge | date = 2011 }}</ref> For an even square, there are ''n''/2 pairs of rows or columns that can be interchanged; thus 2<sup>''n''/2</sup> Γ 2<sup>''n''/2</sup> = 2<sup>''n''</sup> equivalent magic squares by combining such interchanges can be obtained. For odd square, there are (''n'' − 1)/2 pairs of rows or columns that can be interchanged; and 2<sup>''n''−1</sup> equivalent magic squares obtained by combining such interchanges. Interchanging all the rows flips the square vertically (i.e. reflected along the horizontal axis), while interchanging all the columns flips the square horizontally (i.e. reflected along the vertical axis). In the example below, a 4Γ4 associative magic square on the left is transformed into a square on the right by interchanging the second and third row, yielding the famous Durer's magic square. {{col-begin|width=auto;margin:0.5em auto}} {{col-break|valign=bottom}} {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:8em;height:8em;table-layout:fixed;" |- | 16 || 3 || 2 || 13 |- | style="background-color: silver;"|9 || style="background-color: silver;"|6 || style="background-color: silver;"|7 || style="background-color: silver;"|12 |- | style="background-color: silver;"|5 || style="background-color: silver;"|10 || style="background-color: silver;"|11 || style="background-color: silver;"|8 |- | 4 || 15 || 14 || 1 |} {{col-break|valign=bottom|gap=1em}} {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:8em;height:8em;table-layout:fixed;" |- | 16 || 3 || 2 || 13 |- | 5 || 10 || 11 || 8 |- | 9 || 6 || 7 || 12 |- | 4 || 15 || 14 || 1 |} {{col-end}} * An associative magic square remains associative when two same sided rows (or columns) are interchanged along with corresponding other sided rows (or columns).<ref name="White-Assoc-Magic"/><ref name="Hawley2011"/> For an even square, since there are ''n''/2 same sided rows (or columns), there are ''n''(''n'' − 2)/8 pairs of such rows (or columns) that can be interchanged. Thus, 2<sup>''n''(''n'' − 2)/8</sup> Γ 2<sup>''n''(''n'' − 2)/8</sup> = 2<sup>''n''(''n'' − 2)/4</sup> equivalent magic squares can be obtained by combining such interchanges. For odd square, since there are (''n'' − 1)/2 same sided rows or columns, there are (''n'' − 1)(''n'' − 3)/8 pairs of such rows or columns that can be interchanged. Thus, there are 2<sup>(''n'' − 1)(''n'' − 3)/8</sup> Γ 2<sup>(''n'' − 1)(''n'' − 3)/8</sup> = 2<sup>(''n'' − 1)(''n'' − 3)/4</sup> equivalent magic squares obtained by combining such interchanges. Interchanging all the same sided rows flips each quadrants of the square vertically, while interchanging all the same sided columns flips each quadrant of the square horizontally. In the example below, the original square is on the left, whose rows 1 and 2 are interchanged with each other, along with rows 3 and 4, to obtain the transformed square on the right. {{col-begin|width=auto;margin:0.5em auto}} {{col-break|valign=bottom}} {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:8em;height:8em;table-layout:fixed;" |- | 1 || 15 || 14 || 4 |- | 12 || 6 || 7 || 9 |- | 8 || 10 || 11 || 5 |- | 13 || 3 || 2 || 16 |} {{col-break|valign=bottom|gap=1em}} {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:8em;height:8em;table-layout:fixed;" |- | 12 || 6 || 7 || 9 |- | 1 || 15 || 14 || 4 |- | 13 || 3 || 2 || 16 |- | 8 || 10 || 11 || 5 |} {{col-end}} * An associative magic square remains associative when its entries are replaced with corresponding numbers from a set of ''s'' arithmetic progressions with the same common difference among ''r'' terms, such that ''r'' Γ ''s'' = ''n''<sup>2</sup>, and whose initial terms are also in arithmetic progression, to obtain a non-normal magic square. Here either ''s'' or ''r'' should be a multiple of ''n''. Let us have ''s'' arithmetic progressions given by ::<math> \begin{array}{lllll} a & a + c & a + 2c & \cdots & a + (r-1)c \\ a + d & a + c + d & a + 2c + d & \cdots & a + (r-1)c + d \\ a + 2d & a + c + 2d & a + 2c + 2d & \cdots & a + (r-1)c + 2d \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a + (s-1)d & a + c + (s-1)d & a + 2c + (s-1)d & \cdots & a + (r-1)c + (s-1)d \\ \end{array} </math> :where ''a'' is the initial term, ''c'' is the common difference of the arithmetic progressions, and ''d'' is the common difference among the initial terms of each progression. The new magic constant will be ::<math> M = na + \frac{n}{2} \big[ (r-1)c+ (s-1)d \big]. </math> :If ''s'' = ''r'' = ''n'', then follows the simplification ::<math> M = na + \frac{n}{2}(n-1)(c+d). </math> :With ''a'' = ''c'' = 1 and ''d'' = ''n'', the usual ''M'' = ''n''(''n''<sup>2</sup>+1)/2 is obtained. For given ''M'' the required ''a'', ''c'', and ''d'' can be found by solving the [[linear Diophantine equation]]. In the examples below, there are order 4 normal magic squares on the left most side. The second square is a corresponding non-normal magic square with ''r'' = 8, ''s'' = 2, ''a'' = 1, ''c'' = 1, and ''d'' = 10 such that the new magic constant is ''M'' = 38. The third square is an order 5 normal magic square, which is a 90 degree clockwise rotated version of the square generated by De la Loubere method. On the right most side is a corresponding non-normal magic square with ''a'' = 4, ''c'' = 1, and ''d'' = 6 such that the new magic constant is ''M'' = 90. {{col-begin|width=auto;margin:0.5em auto}} {{col-break|valign=bottom}} {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:8em;height:8em;table-layout:fixed;" |- | 1 || 15 || 14 || 4 |- | 12 || 6 || 7 || 9 |- | 8 || 10 || 11 || 5 |- | 13 || 3 || 2 || 16 |} {{col-break|valign=bottom|gap=1em}} {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:8em;height:8em;table-layout:fixed;" |- | 1 || 17 || 16 || 4 |- | 14 || 6 || 7 || 11 |- | 8 || 12 || 13 || 5 |- | 15 || 3 || 2 || 18 |} {{col-break|valign=bottom|gap=1em}} {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:10em;height:10em;table-layout:fixed;" |- | 11 || 10 || 4 || 23 || 17 |- | 18 || 12 || 6 || 5 || 24 |- | 25 || 19 || 13 || 7 || 1 |- | 2 || 21 || 20 || 14 || 8 |- | 9 || 3 || 22 || 16 || 15 |} {{col-break|valign=bottom|gap=1em}} {| class="wikitable" style="margin-left:auto;margin-right:auto;text-align:center;width:10em;height:10em;table-layout:fixed;" |- | 16 || 14 || 7 || 30 || 23 |- | 24 || 17 || 10 || 8 || 31 |- | 32 || 25 || 18 || 11 || 4 |- | 5 || 28 || 26 || 19 || 12 |- | 13 || 6 || 29 || 22 || 20 |} {{col-end}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Magic square
(section)
Add topic