Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fourier series
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Fourier series of a Bravais-lattice-periodic function === <!--Linked from Reciprocal Lattice to anchor Multidimensional--> A three-dimensional [[Bravais lattice]] is defined as the set of vectors of the form <math display="block">\mathbf{R} = n_1\mathbf{a}_1 + n_2\mathbf{a}_2 + n_3\mathbf{a}_3</math> where <math>n_i</math> are integers and <math>\mathbf{a}_i</math> are three linearly independent but not necessarily orthogonal vectors. Let us consider some function <math>f(\mathbf{r})</math> with the same periodicity as the Bravais lattice, ''i.e.'' <math>f(\mathbf{r}) = f(\mathbf{R}+\mathbf{r})</math> for any lattice vector <math>\mathbf{R}</math>. This situation frequently occurs in [[solid-state physics]] where <math>f(\mathbf{r})</math> might, for example, represent the effective potential that an electron "feels" inside a periodic crystal. In presence of such a periodic potential, the quantum-mechanical description of the electron results in a periodically modulated plane-wave commonly known as [[Bloch's theorem|Bloch state]]. In order to develop <math>f(\mathbf{r})</math> in a Fourier series, it is convenient to introduce an auxiliary function <math display="block">g(x_1,x_2,x_3) \triangleq f(\mathbf{r}) = f \left (x_1\frac{\mathbf{a}_{1}}{a_1}+x_2\frac{\mathbf{a}_{2}}{a_2}+x_3\frac{\mathbf{a}_{3}}{a_3} \right ).</math> Both <math>f(\mathbf{r})</math> and <math>g(x_1,x_2,x_3)</math> contain essentially the same information. However, instead of the position vector <math>\mathbf{r}</math>, the arguments of <math>g</math> are coordinates <math>x_{1,2,3} </math> along the unit vectors <math>\mathbf{a}_{i}/{a_i}</math> of the Bravais lattice, such that <math>g</math> is an ordinary periodic function in these variables,<math display="block">g(x_1,x_2,x_3) = g(x_1+a_1,x_2,x_3) = g(x_1,x_2+a_2,x_3) = g(x_1,x_2,x_3+a_3)\quad\forall\;x_1,x_2,x_3.</math> This trick allows us to develop <math>g</math> as a multi-dimensional Fourier series, in complete analogy with the square-periodic function discussed in the previous section. Its Fourier coefficients are<math display="block">\begin{align} c(m_1, m_2, m_3) = \frac{1}{a_3}\int_0^{a_3} dx_3 \frac{1}{a_2}\int_0^{a_2} dx_2 \frac{1}{a_1}\int_0^{a_1} dx_1\, g(x_1, x_2, x_3)\, e^{-i 2\pi \left(\tfrac{m_1}{a_1} x_1+\tfrac{m_2}{a_2} x_2 + \tfrac{m_3}{a_3} x_3\right)} \end{align},</math> where <math>m_1,m_2,m_3</math> are all integers. <math>c(m_1,m_2,m_3)</math> plays the same role as the coefficients <math>c_{j,k}</math> in the previous section but in order to avoid double subscripts we note them as a function. Once we have these coefficients, the function <math>g</math> can be recovered via the Fourier series <math display="block">g(x_1, x_2, x_3)=\sum_{m_1, m_2, m_3 \in \Z } \,c(m_1, m_2, m_3) \, e^{i 2\pi \left( \tfrac{m_1}{a_1} x_1+ \tfrac{m_2}{a_2} x_2 + \tfrac{m_3}{a_3} x_3\right)}.</math> We would now like to abandon the auxiliary coordinates <math>x_{1,2,3} </math> and to return to the original position vector <math>\mathbf{r}</math>. This can be achieved by means of the [[reciprocal lattice]] whose vectors <math>\mathbf{b}_{1,2,3}</math> are defined such that they are orthonormal (up to a factor <math>2\pi</math>) to the original Bravais vectors <math>\mathbf{a}_{1,2,3}</math>, <math display="block">\mathbf{a}_i\cdot\mathbf{b_j}=2\pi\delta_{ij}, </math>with <math>\delta_{ij} </math> the [[Kronecker delta]]. With this, the scalar product between a reciprocal lattice vector <math>\mathbf{Q}</math> and an arbitrary position vector <math>\mathbf{r}</math> written in the Bravais lattice basis becomes <math display="block">\mathbf{Q} \cdot \mathbf{r} = \left ( m_1\mathbf{b}_1 + m_2\mathbf{b}_2 + m_3\mathbf{b}_3 \right ) \cdot \left (x_1\frac{\mathbf{a}_1}{a_1}+ x_2\frac{\mathbf{a}_2}{a_2} +x_3\frac{\mathbf{a}_3}{a_3} \right ) = 2\pi \left( x_1\frac{m_1}{a_1}+x_2\frac{m_2}{a_2}+x_3\frac{m_3}{a_3} \right ),</math>which is exactly the expression occurring in the Fourier exponents. The Fourier series for <math>f(\mathbf{r}) =g(x_1,x_2,x_3)</math> can therefore be rewritten as a sum over the all reciprocal lattice vectors <math>\mathbf{Q}= m_1\mathbf{b}_1+m_2\mathbf{b}_2+m_3\mathbf{b}_3 </math>,<math display="block">f(\mathbf{r})=\sum_{\mathbf{Q}} c(\mathbf{Q})\, e^{i \mathbf{Q} \cdot \mathbf{r}},</math> and the coefficients are<math display="block">c(\mathbf{Q}) = \frac{1}{a_3} \int_0^{a_3} dx_3 \, \frac{1}{a_2}\int_0^{a_2} dx_2 \, \frac{1}{a_1}\int_0^{a_1} dx_1 \, f\left(x_1\frac{\mathbf{a}_1}{a_1} + x_2\frac{\mathbf{a}_2}{a_2} + x_3\frac{\mathbf{a}_3}{a_3} \right) e^{-i \mathbf{Q} \cdot \mathbf{r}}.</math> The remaining task will be to convert this integral over lattice coordinates back into a volume integral. The relation between the lattice coordinates <math>x_{1,2,3}</math> and the original cartesian coordinates <math>\mathbf{r} = (x,y,z)</math> is a linear system of equations, <math display="block">\mathbf{r} = x_1\frac{\mathbf{a}_1}{a_1}+x_2\frac{\mathbf{a}_2}{a_2}+x_3\frac{\mathbf{a}_3}{a_3},</math>which, when written in matrix form, <math display="block">\begin{bmatrix}x\\y\\z\end{bmatrix} =\mathbf{J}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} =\begin{bmatrix}\frac{\mathbf{a}_1}{a_1},\frac{\mathbf{a}_2}{a_2},\frac{\mathbf{a}_3}{a_3}\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\,,</math>involves a constant matrix <math>\mathbf{J}</math> whose columns are the unit vectors <math>\mathbf{a}_j/a_j </math> of the Bravais lattice. When changing variables from <math>\mathbf{r}</math> to <math>(x_1,x_2,x_3)</math> in an integral, the same matrix <math>\mathbf{J}</math> appears as a [[Jacobian matrix and determinant|Jacobian matrix]]<math display="block">\mathbf{J}=\begin{bmatrix} \dfrac{\partial x}{\partial x_1} & \dfrac{\partial x}{\partial x_2} & \dfrac{\partial x}{\partial x_3 } \\[12pt] \dfrac{\partial y}{\partial x_1} & \dfrac{\partial y}{\partial x_2} & \dfrac{\partial y}{\partial x_3} \\[12pt] \dfrac{\partial z}{\partial x_1} & \dfrac{\partial z}{\partial x_2} & \dfrac{\partial z}{\partial x_3} \end{bmatrix}\,.</math> Its determinant <math>J </math> is therefore also constant and can be inferred from any integral over any domain; here we choose to calculate the volume of the primitive unit cell <math>\Gamma </math> in both coordinate systems: <math display="block">V_{\Gamma} = \int_{\Gamma} d^3 r = J \int_{0}^{a_1} dx_1 \int_{0}^{a_2} dx_2 \int_{0}^{a_3} dx_3=J\, a_1 a_2 a_3 </math> The unit cell being a [[parallelepiped]], we have <math>V_{\Gamma}=\mathbf{a}_1\cdot(\mathbf{a}_2 \times \mathbf{a}_3)</math> and thus <math display="block">d^3r=J dx_1 dx_2 dx_3 =\frac{\mathbf{a}_1\cdot(\mathbf{a}_2 \times \mathbf{a}_3)}{a_1 a_2 a_3} dx_1 dx_2 dx_3.</math> This allows us to write <math>c (\mathbf{Q})</math> as the desired volume integral over the primitive unit cell <math>\Gamma </math> in ordinary cartesian coordinates: <math display="block">c(\mathbf{Q}) = \frac{1}{\mathbf{a}_1\cdot(\mathbf{a}_2 \times \mathbf{a}_3)}\int_{\Gamma} d^3 r\, f(\mathbf{r})\cdot e^{-i \mathbf{Q} \cdot \mathbf{r}}\,. </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fourier series
(section)
Add topic