Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cell nucleus
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Evolution== As the major defining characteristic of the eukaryotic cell, the nucleus's [[evolution]]ary origin has been the subject of much speculation. Four major hypotheses have been proposed to explain the existence of the nucleus, although none have yet earned widespread support.<ref name="Pennisi">{{cite journal | vauthors = Pennisi E | author-link = Elizabeth Pennisi | title = Evolutionary biology. The birth of the nucleus | journal = Science | volume = 305 | issue = 5685 | pages = 766–8 | date = August 2004 | pmid = 15297641 | doi = 10.1126/science.305.5685.766 | s2cid = 83769250 | department = News }}</ref><ref name="Devos_2014">{{cite journal | vauthors = Devos DP, Gräf R, Field MC | title = Evolution of the nucleus | journal = Current Opinion in Cell Biology | volume = 28 | pages = 8–15 | date = June 2014 | issue = 100 | pmid = 24508984 | pmc = 4071446 | doi = 10.1016/j.ceb.2014.01.004 | department = Review }}</ref><ref name="López-García_2015">{{cite journal | vauthors = López-García P, Moreira D | title = Open Questions on the Origin of Eukaryotes | journal = Trends in Ecology & Evolution | volume = 30 | issue = 11 | pages = 697–708 | date = November 2015 | pmid = 26455774 | pmc = 4640172 | doi = 10.1016/j.tree.2015.09.005 | bibcode = 2015TEcoE..30..697L | department = Review }}</ref> The first model known as the "syntrophic model" proposes that a [[Symbiosis|symbiotic]] relationship between the [[archaea]] and [[bacteria]] created the nucleus-containing eukaryotic cell. (Organisms of the Archaeal and Bacterial domains have no cell nucleus.<ref>{{cite book | vauthors = Hogan CM | chapter = Archaea | title = Encyclopedia of Earth | veditors = Monosson E, Cleveland C | publisher = National Council for Science and the Environment | location = Washington, DC. | date = 2010 | archive-url = https://web.archive.org/web/20110511133400/http://www.eoearth.org/article/Archaea?topic=49496 | archive-date = 11 May 2011 | chapter-url = http://www.eoearth.org/article/Archaea?topic=49496 }}</ref>) It is hypothesized that the symbiosis originated when ancient archaea similar to modern [[Methanogenesis|methanogenic]] archaea, invaded and lived within bacteria similar to modern [[myxobacteria]], eventually forming the early nucleus. This theory is analogous to the accepted theory for the origin of eukaryotic mitochondria and [[chloroplast]]s, which are thought to have developed from a similar endosymbiotic relationship between proto-eukaryotes and aerobic bacteria.<ref name="Margulis">{{cite book | last= Margulis | first= Lynn | author-link= Lynn Margulis |name-list-style= vanc | year= 1981 | title= Symbiosis in Cell Evolution | pages= [https://archive.org/details/symbiosisincelle00marg/page/206 206–227] | publisher= W. H. Freeman and Company | location= San Francisco | isbn= 978-0-7167-1256-5 | url= https://archive.org/details/symbiosisincelle00marg/page/206 }}</ref> One possibility is that the nuclear membrane arose as a new membrane system following the origin of [[mitochondrion|mitochondria]] in an [[Archaea|archaebacterial]] host.<ref name="Martin">{{cite journal |vauthors=Martin W |title=Archaebacteria (Archaea) and the origin of the eukaryotic nucleus |journal=Curr Opin Microbiol |volume=8 |issue=6 |pages=630–7 |date=December 2005 |pmid=16242992 |doi=10.1016/j.mib.2005.10.004 |url=}}</ref> The nuclear membrane may have served to protect the genome from damaging [[reactive oxygen species]] produced by the protomitochondria.<ref>Bernstein, H., Bernstein, C. (2017). Sexual Communication in Archaea, the Precursor to Eukaryotic Meiosis. In: Witzany, G. (eds) Biocommunication of Archaea. Springer, Cham. https://doi.org/10.1007/978-3-319-65536-9_7</ref> The archaeal origin of the nucleus is supported by observations that archaea and eukarya have similar genes for certain proteins, including [[histone]]s. Observations that myxobacteria are motile, can form multicellular complexes, and possess [[kinase]]s and [[G protein]]s similar to eukarya, support a bacterial origin for the eukaryotic cell.<ref name="Lopez-Garcia">{{cite journal | vauthors = López-García P, Moreira D | title = Selective forces for the origin of the eukaryotic nucleus | journal = BioEssays | volume = 28 | issue = 5 | pages = 525–33 | date = May 2006 | pmid = 16615090 | doi = 10.1002/bies.20413 | department = Review }}</ref> A second model proposes that proto-eukaryotic cells evolved from bacteria without an endosymbiotic stage. This model is based on the existence of modern [[Planctomycetota]] bacteria that possess a nuclear structure with primitive pores and other compartmentalized membrane structures.<ref name="Fuerst">{{cite journal | vauthors = Fuerst JA | title = Intracellular compartmentation in planctomycetes | journal = Annual Review of Microbiology | volume = 59 | pages = 299–328 | year = 2005 | pmid = 15910279 | doi = 10.1146/annurev.micro.59.030804.121258 | department = Review }}</ref> A similar proposal states that a eukaryote-like cell, the [[Eukaryote#External phylogeny: relationship to Archaea and Bacteria|chronocyte]], evolved first and [[phagocytosed]] archaea and bacteria to generate the nucleus and the eukaryotic cell.<ref name="Hartman">{{cite journal | vauthors = Hartman H, Fedorov A | title = The origin of the eukaryotic cell: a genomic investigation | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 99 | issue = 3 | pages = 1420–5 | date = February 2002 | pmid = 11805300 | pmc = 122206 | doi = 10.1073/pnas.032658599 | department = Primary | bibcode = 2002PNAS...99.1420H | doi-access = free }}</ref> The most controversial model, known as ''[[viral eukaryogenesis]]'', posits that the membrane-bound nucleus, along with other eukaryotic features, originated from the infection of a prokaryote by a virus. The suggestion is based on similarities between eukaryotes and viruses such as linear DNA strands, mRNA capping, and tight binding to proteins (analogizing histones to [[viral envelope]]s). One version of the proposal suggests that the nucleus evolved in concert with [[phagocytosis]] to form an early cellular "[[predator]]".<ref name="Bell">{{cite journal | vauthors = Bell PJ | title = Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus? | journal = Journal of Molecular Evolution | volume = 53 | issue = 3 | pages = 251–6 | date = September 2001 | pmid = 11523012 | doi = 10.1007/s002390010215 | s2cid = 20542871 | department = Comment | bibcode = 2001JMolE..53..251L | doi-access = free }}</ref> Another variant proposes that eukaryotes originated from early archaea infected by [[poxvirus]]es, on the basis of observed similarity between the [[DNA polymerase]]s in modern poxviruses and eukaryotes.<ref name="Takemura">{{cite journal | vauthors = Takemura M | title = Poxviruses and the origin of the eukaryotic nucleus | journal = Journal of Molecular Evolution | volume = 52 | issue = 5 | pages = 419–25 | date = May 2001 | pmid = 11443345 | doi = 10.1007/s002390010171 | s2cid = 21200827 | department = Primary | bibcode = 2001JMolE..52..419T }}</ref><ref name="Villareal">{{cite journal | vauthors = Villarreal LP, DeFilippis VR | title = A hypothesis for DNA viruses as the origin of eukaryotic replication proteins | journal = Journal of Virology | volume = 74 | issue = 15 | pages = 7079–84 | date = August 2000 | pmid = 10888648 | pmc = 112226 | doi = 10.1128/JVI.74.15.7079-7084.2000 | department = Primary }}</ref> It has been suggested that the unresolved question of the [[evolution of sex]] could be related to the viral eukaryogenesis hypothesis.<ref name="Bell2">{{cite journal | vauthors = Bell PJ | title = Sex and the eukaryotic cell cycle is consistent with a viral ancestry for the eukaryotic nucleus | journal = Journal of Theoretical Biology | volume = 243 | issue = 1 | pages = 54–63 | date = November 2006 | pmid = 16846615 | doi = 10.1016/j.jtbi.2006.05.015 | bibcode = 2006JThBi.243...54B | department = Primary <!-- but secondary to the original eukaryogenesis hypothesis --> }}</ref> A more recent proposal, the ''exomembrane hypothesis'', suggests that the nucleus instead originated from a single ancestral cell that evolved a second exterior cell membrane; the interior membrane enclosing the original cell then became the nuclear membrane and evolved increasingly elaborate pore structures for passage of internally synthesized cellular components such as ribosomal subunits.<ref name="deRoos">{{cite journal | vauthors = de Roos AD | title = The origin of the eukaryotic cell based on conservation of existing interfaces | journal = Artificial Life | volume = 12 | issue = 4 | pages = 513–23 | year = 2006 | pmid = 16953783 | doi = 10.1162/artl.2006.12.4.513 | s2cid = 5963228 | department = Primary }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cell nucleus
(section)
Add topic