Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Uncertainty principle
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Hardy's uncertainty principle === The mathematician [[G. H. Hardy]] formulated the following uncertainty principle:<ref>{{Citation|first=G.H.|last=Hardy|author-link=G. H. Hardy|title=A theorem concerning Fourier transforms|journal=Journal of the London Mathematical Society|volume=8|year=1933|issue=3|pages=227–231|doi=10.1112/jlms/s1-8.3.227}}</ref> it is not possible for {{mvar|f}} and {{math| ƒ̂}} to both be "very rapidly decreasing". Specifically, if {{mvar|f}} in <math>L^2(\mathbb{R})</math> is such that <math display="block">|f(x)|\leq C(1+|x|)^Ne^{-a\pi x^2}</math> and <math display="block">|\hat{f}(\xi)|\leq C(1+|\xi|)^Ne^{-b\pi \xi^2}</math> (<math>C>0,N</math> an integer), then, if {{math|1=''ab'' > 1, ''f'' = 0}}, while if {{math|1=''ab'' = 1}}, then there is a polynomial {{mvar|P}} of degree {{math|≤ ''N''}} such that <math display="block">f(x)=P(x)e^{-a\pi x^2}. </math> This was later improved as follows: if <math>f \in L^2(\mathbb{R}^d)</math> is such that <math display="block">\int_{\mathbb{R}^d}\int_{\mathbb{R}^d}|f(x)||\hat{f}(\xi)|\frac{e^{\pi|\langle x,\xi\rangle|}}{(1+|x|+|\xi|)^N} \, dx \, d\xi < +\infty ~,</math> then <math display="block">f(x)=P(x)e^{-\pi\langle Ax,x\rangle} ~,</math> where {{mvar|P}} is a polynomial of degree {{math|(''N'' − ''d'')/2}} and {{mvar|A}} is a real {{math|''d'' × ''d''}} positive definite matrix. This result was stated in Beurling's complete works without proof and proved in Hörmander<ref>{{Citation | first=L. | last=Hörmander | author-link=Lars Hörmander|title=A uniqueness theorem of Beurling for Fourier transform pairs|journal= Ark. Mat. | volume=29|issue=1–2|year=1991|pages=231–240|bibcode=1991ArM....29..237H|doi=10.1007/BF02384339|s2cid=121375111 | doi-access=free}}</ref> (the case <math>d=1,N=0</math>) and Bonami, Demange, and Jaming<ref>{{Citation | first1=A. | last1=Bonami | author1-link= Aline Bonami |first2=B.|last2=Demange|first3=Ph.|last3=Jaming|title=Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms |journal= Rev. Mat. Iberoamericana | volume=19 | year=2003 | pages=23–55 | bibcode=2001math......2111B|arxiv=math/0102111| doi=10.4171/RMI/337|s2cid=1211391}}</ref> for the general case. Note that Hörmander–Beurling's version implies the case {{math|''ab'' > 1}} in Hardy's Theorem while the version by Bonami–Demange–Jaming covers the full strength of Hardy's Theorem. A different proof of Beurling's theorem based on Liouville's theorem appeared in ref.<ref>{{Citation|first=Haakan|last=Hedenmalm|title=Heisenberg's uncertainty principle in the sense of Beurling|journal=[[Journal d'Analyse Mathématique]] | volume=118 | issue=2 | year=2012 | pages=691–702 | doi=10.1007/s11854-012-0048-9 | doi-access=free | arxiv=1203.5222 | bibcode=2012arXiv1203.5222H | s2cid=54533890}}</ref> A full description of the case {{math|''ab'' < 1}} as well as the following extension to Schwartz class distributions appears in ref.<ref>{{Citation|first=Bruno|last=Demange|title=Uncertainty Principles Associated to Non-degenerate Quadratic Forms|year=2009|publisher= Société Mathématique de France|isbn=978-2-85629-297-6}}</ref> {{math theorem| If a tempered distribution <math>f\in\mathcal{S}'(\R^d)</math> is such that <math display="block">e^{\pi|x|^2}f\in\mathcal{S} '(\R^d)</math> and <math display="block">e^{\pi|\xi|^2}\hat f\in\mathcal{S}'(\R^d) ~,</math> then <math display="block">f(x)=P(x)e^{-\pi\langle Ax,x\rangle} ~,</math> for some convenient polynomial {{mvar|P}} and real positive definite matrix {{mvar|A}} of type {{math|''d'' × ''d''}}.}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Uncertainty principle
(section)
Add topic