Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Singular value decomposition
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Based on the spectral theorem === Let <math>\mathbf{M}</math> be an {{tmath|m \times n}} complex matrix. Since <math>\mathbf{M}^* \mathbf{M}</math> is positive semi-definite and Hermitian, by the [[spectral theorem]], there exists an {{tmath|n \times n}} unitary matrix <math>\mathbf{V}</math> such that <math display=block> \mathbf V^* \mathbf M^* \mathbf M \mathbf V = \bar\mathbf{D} = \begin{bmatrix} \mathbf{D} & 0 \\ 0 & 0\end{bmatrix}, </math> where <math>\mathbf{D}</math> is diagonal and positive definite, of dimension <math>\ell\times \ell</math>, with <math>\ell</math> the number of non-zero eigenvalues of <math>\mathbf{M}^* \mathbf{M}</math> (which can be shown to verify <math>\ell\le\min(n,m)</math>). Note that <math>\mathbf{V}</math> is here by definition a matrix whose <math>i</math>-th column is the <math>i</math>-th eigenvector of <math>\mathbf{M}^* \mathbf{M}</math>, corresponding to the eigenvalue <math>\bar{\mathbf{D}}_{ii}</math>. Moreover, the <math>j</math>-th column of <math>\mathbf{V}</math>, for <math>j>\ell</math>, is an eigenvector of <math>\mathbf{M}^* \mathbf{M}</math> with eigenvalue <math>\bar{\mathbf{D}}_{jj}=0</math>. This can be expressed by writing <math>\mathbf{V}</math> as <math>\mathbf{V}=\begin{bmatrix}\mathbf{V}_1 &\mathbf{V}_2\end{bmatrix}</math>, where the columns of <math>\mathbf{V}_1</math> and <math>\mathbf{V}_2</math> therefore contain the eigenvectors of <math>\mathbf{M}^* \mathbf{M}</math> corresponding to non-zero and zero eigenvalues, respectively. Using this rewriting of <math>\mathbf{V}</math>, the equation becomes: <math display=block> \begin{bmatrix} \mathbf{V}_1^* \\ \mathbf{V}_2^* \end{bmatrix} \mathbf{M}^* \mathbf{M}\, \begin{bmatrix} \mathbf{V}_1 & \!\! \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{V}_1^* \mathbf{M}^* \mathbf{M} \mathbf{V}_1 & \mathbf{V}_1^* \mathbf{M}^* \mathbf{M} \mathbf{V}_2 \\ \mathbf{V}_2^* \mathbf{M}^* \mathbf{M} \mathbf{V}_1 & \mathbf{V}_2^* \mathbf{M}^* \mathbf{M} \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{D} & 0 \\ 0 & 0 \end{bmatrix}.</math> This implies that <math display=block> \mathbf{V}_1^* \mathbf{M}^* \mathbf{M} \mathbf{V}_1 = \mathbf{D}, \quad \mathbf{V}_2^* \mathbf{M}^* \mathbf{M} \mathbf{V}_2 = \mathbf{0}. </math> Moreover, the second equation implies <math>\mathbf{M}\mathbf{V}_2 = \mathbf{0}</math>.<ref>To see this, we just have to notice that <math>\operatorname{Tr}(\mathbf{V}_2^* \mathbf{M}^* \mathbf{M} \mathbf{V}_2) = \|\mathbf{M} \mathbf{V}_2\|^2</math>, and remember that <math>\|A\| = 0 \Leftrightarrow A = 0</math>.</ref> Finally, the unitary-ness of <math>\mathbf{V}</math> translates, in terms of <math>\mathbf{V}_1</math> and <math>\mathbf{V}_2</math>, into the following conditions: <math display=block>\begin{align} \mathbf{V}_1^* \mathbf{V}_1 &= \mathbf{I}_1, \\ \mathbf{V}_2^* \mathbf{V}_2 &= \mathbf{I}_2, \\ \mathbf{V}_1 \mathbf{V}_1^* + \mathbf{V}_2 \mathbf{V}_2^* &= \mathbf{I}_{12}, \end{align}</math> where the subscripts on the identity matrices are used to remark that they are of different dimensions. Let us now define <math display=block> \mathbf{U}_1 = \mathbf{M} \mathbf{V}_1 \mathbf{D}^{-\frac{1}{2}}. </math> Then, <math display=block> \mathbf{U}_1 \mathbf{D}^\frac{1}{2} \mathbf{V}_1^* = \mathbf{M} \mathbf{V}_1 \mathbf{D}^{-\frac{1}{2}} \mathbf{D}^\frac{1}{2} \mathbf{V}_1^* = \mathbf{M} (\mathbf{I} - \mathbf{V}_2\mathbf{V}_2^*) = \mathbf{M} - (\mathbf{M}\mathbf{V}_2)\mathbf{V}_2^* = \mathbf{M}, </math> since <math>\mathbf{M}\mathbf{V}_2 = \mathbf{0}. </math> This can be also seen as immediate consequence of the fact that <math>\mathbf{M}\mathbf{V}_1\mathbf{V}_1^* = \mathbf{M}</math>. This is equivalent to the observation that if <math>\{\boldsymbol v_i\}_{i=1}^\ell</math> is the set of eigenvectors of <math>\mathbf{M}^* \mathbf{M}</math> corresponding to non-vanishing eigenvalues <math>\{\lambda_i\}_{i=1}^\ell</math>, then <math>\{\mathbf M \boldsymbol v_i\}_{i=1}^\ell</math> is a set of orthogonal vectors, and <math>\bigl\{\lambda_i^{-1/2}\mathbf M \boldsymbol v_i\bigr\}\vphantom|_{i=1}^\ell</math> is a (generally not complete) set of ''orthonormal'' vectors. This matches with the matrix formalism used above denoting with <math>\mathbf{V}_1</math> the matrix whose columns are <math>\{\boldsymbol v_i\}_{i=1}^\ell</math>, with <math>\mathbf{V}_2</math> the matrix whose columns are the eigenvectors of <math>\mathbf{M}^* \mathbf{M}</math> with vanishing eigenvalue, and <math>\mathbf{U}_1</math> the matrix whose columns are the vectors <math>\bigl\{\lambda_i^{-1/2}\mathbf M \boldsymbol v_i\bigr\}\vphantom|_{i=1}^\ell</math>. We see that this is almost the desired result, except that <math>\mathbf{U}_1</math> and <math>\mathbf{V}_1</math> are in general not unitary, since they might not be square. However, we do know that the number of rows of <math>\mathbf{U}_1</math> is no smaller than the number of columns, since the dimensions of <math>\mathbf{D}</math> is no greater than <math>m</math> and <math>n</math>. Also, since <math display=block> \mathbf{U}_1^*\mathbf{U}_1 = \mathbf{D}^{-\frac{1}{2}}\mathbf{V}_1^*\mathbf{M}^*\mathbf{M} \mathbf{V}_1 \mathbf{D}^{-\frac{1}{2}}=\mathbf{D}^{-\frac{1}{2}}\mathbf{D}\mathbf{D}^{-\frac{1}{2}} = \mathbf{I_1}, </math> the columns in <math>\mathbf{U}_1</math> are orthonormal and can be extended to an orthonormal basis. This means that we can choose <math>\mathbf{U}_2</math> such that <math>\mathbf{U} = \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix}</math> is unitary. For {{tmath|\mathbf V_1}} we already have {{tmath|\mathbf V_2}} to make it unitary. Now, define <math display=block> \mathbf \Sigma = \begin{bmatrix} \begin{bmatrix} \mathbf{D}^\frac{1}{2} & 0 \\ 0 & 0 \end{bmatrix} \\ 0 \end{bmatrix}, </math> where extra zero rows are added '''or removed''' to make the number of zero rows equal the number of columns of {{tmath|\mathbf U_2,}} and hence the overall dimensions of <math>\mathbf \Sigma</math> equal to <math>m\times n</math>. Then <math display=block> \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \mathbf{}D^\frac{1}{2} & 0 \\ 0 & 0 \end{bmatrix} \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 & \mathbf{V}_2 \end{bmatrix}^* = \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \mathbf{D}^\frac{1}{2} \mathbf{V}_1^* \\ 0 \end{bmatrix} = \mathbf{U}_1 \mathbf{D}^\frac{1}{2} \mathbf{V}_1^* = \mathbf{M}, </math> which is the desired result: <math display=block> \mathbf{M} = \mathbf{U} \mathbf \Sigma \mathbf{V}^*. </math> Notice the argument could begin with diagonalizing {{tmath|\mathbf M \mathbf M^*}} rather than {{tmath|\mathbf M^* \mathbf M}} (This shows directly that {{tmath|\mathbf M \mathbf M^*}} and {{tmath|\mathbf M^* \mathbf M}} have the same non-zero eigenvalues).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Singular value decomposition
(section)
Add topic