Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Quadratic reciprocity
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Other rings == There are also quadratic reciprocity laws in [[ring (mathematics)|ring]]s other than the integers. ===Gaussian integers=== In his second monograph on [[quartic reciprocity]]<ref>Gauss, BQ § 60</ref> Gauss stated quadratic reciprocity for the ring <math>\Z[i]</math> of [[Gaussian integer]]s, saying that it is a corollary of the [[quartic reciprocity|biquadratic law]] in <math>\Z[i],</math> but did not provide a proof of either theorem. [[Peter Gustav Lejeune Dirichlet|Dirichlet]]<ref>Dirichlet's proof is in Lemmermeyer, Prop. 5.1 p.154, and Ireland & Rosen, ex. 26 p. 64</ref> showed that the law in <math>\Z[i]</math> can be deduced from the law for <math>\Z</math> without using quartic reciprocity. For an odd Gaussian prime <math>\pi</math> and a Gaussian integer <math>\alpha</math> relatively prime to <math>\pi,</math> define the quadratic character for <math>\Z[i]</math> by: :<math>\left[\frac{\alpha}{\pi}\right]_2 \equiv \alpha^\frac{\mathrm{N} \pi - 1}{2}\bmod{\pi} = \begin{cases} 1 & \exists \eta \in \Z[i]: \alpha \equiv \eta^2 \bmod{\pi} \\ -1 & \text{otherwise} \end{cases} </math> Let <math>\lambda = a + b i, \mu = c + d i</math> be distinct Gaussian primes where ''a'' and ''c'' are odd and ''b'' and ''d'' are even. Then<ref>Lemmermeyer, Prop. 5.1, p. 154</ref> :<math> \left [\frac{\lambda}{\mu}\right ]_2 = \left [\frac{\mu}{\lambda}\right ]_2, \qquad \left [\frac{i}{\lambda}\right ]_2 =(-1)^\frac{b}{2}, \qquad \left [\frac{1+i}{\lambda}\right ]_2 =\left(\frac{2}{a+b}\right).</math> ===Eisenstein integers=== Consider the following third root of unity: :<math>\omega = \frac{-1 + \sqrt{-3}}{2}=e^\frac{2\pi \imath}{3}.</math> The ring of Eisenstein integers is <math>\Z[\omega].</math><ref>See the articles on [[Eisenstein integer]] and [[cubic reciprocity]] for definitions and notations.</ref> For an Eisenstein prime <math>\pi, \mathrm{N} \pi \neq 3,</math> and an Eisenstein integer <math>\alpha</math> with <math>\gcd(\alpha, \pi) = 1,</math> define the quadratic character for <math>\Z[\omega]</math> by the formula :<math>\left[\frac{\alpha}{\pi}\right]_2 \equiv \alpha^\frac{\mathrm{N} \pi - 1}{2}\bmod{\pi} = \begin{cases} 1 &\exists \eta \in \Z[\omega]: \alpha \equiv \eta^2 \bmod{\pi} \\ -1 &\text{otherwise} \end{cases}</math> Let λ = ''a'' + ''bω'' and μ = ''c'' + ''dω'' be distinct Eisenstein primes where ''a'' and ''c'' are not divisible by 3 and ''b'' and ''d'' are divisible by 3. Eisenstein proved<ref>Lemmermeyer, Thm. 7.10, p. 217</ref> :<math> \left[\frac{\lambda}{\mu}\right]_2 \left [\frac{\mu}{\lambda}\right ]_2 = (-1)^{\frac{\mathrm{N} \lambda - 1}{2}\frac{\mathrm{N} \mu-1}{2}}, \qquad \left [\frac{1-\omega}{\lambda}\right ]_2 =\left(\frac{a}{3}\right), \qquad \left [\frac{2}{\lambda}\right ]_2 =\left (\frac{2}{\mathrm{N} \lambda }\right).</math> ===Imaginary quadratic fields=== The above laws are special cases of more general laws that hold for the [[ring of integers]] in any [[Quadratic field|imaginary quadratic number field]]. Let ''k'' be an imaginary quadratic number field with ring of integers <math>\mathcal{O}_k.</math> For a [[Number field#Prime ideals|prime ideal]] <math>\mathfrak{p} \subset \mathcal{O}_k </math> with odd norm <math>\mathrm{N} \mathfrak{p}</math> and <math>\alpha\in \mathcal{O}_k,</math> define the quadratic character for <math>\mathcal{O}_k </math> as :<math>\left[\frac{\alpha}{\mathfrak{p} }\right]_2 \equiv \alpha^{\frac{\mathrm{N} \mathfrak{p} - 1}{2}} \bmod{\mathfrak{p}} = \begin{cases} 1 &\alpha\not\in \mathfrak{p} \text{ and } \exists \eta \in \mathcal{O}_k \text{ such that } \alpha - \eta^2 \in \mathfrak{p} \\ -1 & \alpha\not\in \mathfrak{p} \text{ and there is no such } \eta \\ 0 & \alpha\in \mathfrak{p} \end{cases}</math> for an arbitrary ideal <math>\mathfrak{a} \subset \mathcal{O}_k</math> factored into prime ideals <math>\mathfrak{a} = \mathfrak{p}_1 \cdots \mathfrak{p}_n</math> define :<math>\left [\frac{\alpha}{\mathfrak{a}}\right ]_2 = \left[\frac{\alpha}{\mathfrak{p}_1 }\right]_2\cdots \left[\frac{\alpha}{\mathfrak{p}_n }\right]_2,</math> and for <math>\beta \in \mathcal{O}_k</math> define :<math>\left [\frac{\alpha}{\beta}\right ]_2 = \left [\frac{\alpha}{\beta \mathcal{O}_k}\right ]_2. </math> Let <math>\mathcal{O}_k = \Z \omega_1\oplus \Z \omega_2,</math> i.e. <math>\left\{\omega_1, \omega_2\right\}</math> is an [[Number field#Integral basis|integral basis]] for <math>\mathcal{O}_k.</math> For <math>\nu \in \mathcal{O}_k</math> with odd norm <math>\mathrm{N}\nu,</math> define (ordinary) integers ''a'', ''b'', ''c'', ''d'' by the equations, :<math>\begin{align} \nu\omega_1&=a\omega_1+b\omega_2\\ \nu\omega_2&=c\omega_1+d\omega_2 \end{align}</math> and a function :<math>\chi(\nu) := \imath^{(b^2-a+2)c+(a^2-b+2)d+ad}.</math> If ''m'' = ''Nμ'' and ''n'' = ''Nν'' are both odd, Herglotz proved<ref>Lemmermeyer, Thm 8.15, p.256 ff</ref> :<math> \left [\frac{\mu}{\nu}\right ]_2 \left[\frac{\nu}{\mu}\right]_2 = (-1)^{\frac{m-1}{2}\frac{n-1}{2}} \chi(\mu)^{m\frac{n-1}{2}} \chi(\nu)^{-n\frac{m-1}{2}}. </math> Also, if :<math> \mu \equiv\mu' \bmod{4} \quad \text{and} \quad \nu \equiv\nu' \bmod{4}</math> Then<ref>Lemmermeyer Thm. 8.18, p. 260</ref> :<math> \left [\frac{\mu}{\nu}\right ]_2 \left[\frac{\nu}{\mu}\right]_2 = \left [\frac{\mu'}{\nu'}\right ]_2 \left[\frac{\nu'}{\mu'}\right]_2.</math> ===Polynomials over a finite field=== Let ''F'' be a [[finite field]] with ''q'' = ''p<sup>n</sup>'' elements, where ''p'' is an odd prime number and ''n'' is positive, and let ''F''[''x''] be the [[Polynomial ring|ring of polynomials]] in one variable with coefficients in ''F''. If <math>f,g \in F[x]</math> and ''f'' is [[Irreducible polynomial|irreducible]], [[Monic polynomial|monic]], and has positive degree, define the quadratic character for ''F''[''x''] in the usual manner: :<math>\left(\frac{g}{f}\right) = \begin{cases} 1 & \gcd(f,g)=1 \text{ and } \exists h,k \in F[x] \text{ such that }g-h^2 = kf \\ -1 & \gcd(f,g)=1 \text{ and } g \text{ is not a square}\bmod{f}\\ 0 & \gcd(f,g)\ne 1 \end{cases} </math> If <math>f=f_1 \cdots f_n</math> is a product of monic irreducibles let :<math>\left(\frac{g}{f}\right) = \left(\frac{g}{f_1}\right) \cdots \left(\frac{g}{f_n}\right). </math> Dedekind proved that if <math>f,g \in F[x]</math> are monic and have positive degrees,<ref>Bach & Shallit, Thm. 6.7.1</ref> :<math>\left(\frac{g}{f}\right) \left(\frac{f}{g}\right) = (-1)^{\frac{q-1}{2}(\deg f)(\deg g)}.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Quadratic reciprocity
(section)
Add topic