Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Phase-locked loop
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Phase domain model of APLL=== Consider the input of PLL <math>f_1(\theta_1(t))</math> and VCO output <math>f_2(\theta_2(t))</math> are high frequency signals. Then for any piecewise differentiable <math>2\pi</math>-periodic functions <math>f_1(\theta)</math> and <math>f_2(\theta)</math> there is a function <math>\varphi(\theta)</math> such that the output <math>G(t)</math> of Filter :<math> \left\{ \begin{array}{rcl} \dot x &= &Ax + b \varphi(\theta_1(t) - \theta_2(t)), \\ G(t) &= &c^{*}x, \end{array} \right. \quad x(0) = x_0, </math> in phase domain is asymptotically equal (the difference <math>G(t)- g(t)</math> is small with respect to the frequencies) to the output of the Filter in time domain model. <ref>{{cite journal | author = G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, R. V. Yuldashev | year = 2012 | title = Analytical method for computation of phase-detector characteristic | journal = IEEE Transactions on Circuits and Systems II: Express Briefs | volume = 59 | issue = 10 | pages = 633β637 |url=http://www.math.spbu.ru/user/nk/PDF/2012-IEEE-TCAS-Phase-detector-characteristic-computation-PLL.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.math.spbu.ru/user/nk/PDF/2012-IEEE-TCAS-Phase-detector-characteristic-computation-PLL.pdf |archive-date=2022-10-09 |url-status=live | last2 = Kuznetsov | last3 = Yuldashev | last4 = Yuldashev | doi = 10.1109/TCSII.2012.2213362 | s2cid = 2405056 }}</ref> <ref>{{cite book | author = N.V. Kuznetsov, G.A. Leonov, M.V. Yuldashev, R.V. Yuldashev | year = 2011 | pages = 7β10 | doi = 10.1109/ISSCS.2011.5978639| last2 = Leonov | last3 = Yuldashev | last4 = Yuldashev | title = ISSCS 2011 - International Symposium on Signals, Circuits and Systems | chapter = Analytical methods for computation of phase-detector characteristics and PLL design | isbn = 978-1-61284-944-7 | s2cid = 30208667 | chapter-url = https://zenodo.org/record/889367 }}</ref> Here function <math>\varphi(\theta)</math> is a [[phase detector characteristic]]. Denote by <math>\theta_{\Delta}(t)</math> the phase difference :<math>\theta_{\Delta} = \theta_1(t) - \theta_2(t).</math> Then the following [[dynamical system]] describes PLL behavior :<math> \left\{ \begin{array}{rcl} \dot x &= &Ax + b \varphi(\theta_{\Delta}),\\ \dot \theta_{\Delta} &= & - g_v c^{*}x + \omega_{\Delta}. \\ \end{array} \right. \quad x(0) = x_0, \quad \theta_{\Delta}(0) = \theta_{1}(0) - \theta_2(0). </math> Here <math>\omega_{\Delta} = \omega_1 - \omega_\text{free}</math>; <math>\omega_1</math> is the frequency of a reference oscillator (we assume that <math>\omega_\text{free}</math> is constant). ====Example==== Consider sinusoidal signals :<math>f_1(\theta_1(t)) = A_1 \sin(\theta_1(t)), \quad f_2(\theta_2(t)) = A_2\cos(\theta_2(t))</math> and a simple one-pole [[RC circuit]] as a filter. The time-domain model takes the form :<math> \left\{ \begin{align} \dot x &= -\frac{1}{RC}x + \frac{1}{RC} A_1A_2\sin(\theta_1(t)) \cos(\theta_2(t)),\\[6pt] \dot \theta_2 &= g_v c^{*}x + \omega_\text{free} \end{align} \right. </math> PD characteristics for this signals is equal<ref>A. J. Viterbi, ''Principles of Coherent Communication'', McGraw-Hill, New York, 1966</ref> to :<math> \varphi(\theta_1 - \theta_2) = \frac{A_1 A_2}{2}\sin(\theta_1 - \theta_2) </math> Hence the phase domain model takes the form :<math> \left\{ \begin{align} \dot x &= -\frac{1}{RC}x + \frac{1}{RC}\frac{A_1 A_2}{2}\sin(\theta_{\Delta}),\\[6pt] \dot \theta_{\Delta} &= - g_v c^{*}x + \omega_{\Delta}. \end{align} \right. </math> This system of equations is equivalent to the equation of mathematical pendulum :<math> \begin{align} x & = \frac{\dot\theta_2 - \omega_2}{g_v c^*} = \frac{\omega_1 - \dot\theta_{\Delta} - \omega_2}{g_v c^*},\\[6pt] \dot x & = \frac{\ddot\theta_2}{g_v c^*},\\[6pt] \theta_1 & = \omega_1 t + \Psi,\\[6pt] \theta_{\Delta} & = \theta_1 -\theta_2,\\[6pt] \dot\theta_{\Delta} & = \dot\theta_1 - \dot\theta_2 = \omega_1 - \dot\theta_2,\\[6pt] & \frac{1}{g_v c^*}\ddot\theta_{\Delta} - \frac{1}{g_v c^* RC}\dot\theta_{\Delta} - \frac{A_1A_2}{2RC}\sin\theta_{\Delta} = \frac{\omega_2 - \omega_1}{g_v c^* RC}. \end{align} </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Phase-locked loop
(section)
Add topic