Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Lie algebra
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Simple and semisimple === {{main|Semisimple Lie algebra}} A Lie algebra <math>\mathfrak{g}</math> is called ''[[Simple Lie algebra|simple]]'' if it is not abelian and the only ideals in <math>\mathfrak{g}</math> are 0 and <math>\mathfrak{g}</math>. (In particular, a one-dimensional—necessarily abelian—Lie algebra <math>\mathfrak{g}</math> is by definition not simple, even though its only ideals are 0 and <math>\mathfrak{g}</math>.) A finite-dimensional Lie algebra <math>\mathfrak{g}</math> is called ''[[semisimple Lie algebra|semisimple]]'' if the only solvable ideal in <math>\mathfrak{g}</math> is 0. In characteristic zero, a Lie algebra <math>\mathfrak{g}</math> is semisimple if and only if it is isomorphic to a product of simple Lie algebras, <math>\mathfrak{g} \cong \mathfrak{g}_1 \times \cdots \times \mathfrak{g}_r</math>.<ref>{{harvnb|Jacobson|1979|loc=Ch. III, § 5.}}</ref> For example, the Lie algebra <math>\mathfrak{sl}(n,F)</math> is simple for every <math>n\geq 2</math> and every field ''F'' of characteristic zero (or just of characteristic not dividing ''n''). The Lie algebra <math>\mathfrak{su}(n)</math> over <math>\mathbb{R}</math> is simple for every <math>n\geq 2</math>. The Lie algebra <math>\mathfrak{so}(n)</math> over <math>\mathbb{R}</math> is simple if <math>n=3</math> or <math>n\geq 5</math>.<ref>{{harvnb|Erdmann|Wildon|2006|loc=Theorem 12.1.}}</ref> (There are "exceptional isomorphisms" <math>\mathfrak{so}(3)\cong\mathfrak{su}(2)</math> and <math>\mathfrak{so}(4)\cong\mathfrak{su}(2) \times \mathfrak{su}(2)</math>.) The concept of semisimplicity for Lie algebras is closely related with the complete reducibility (semisimplicity) of their representations. When the ground field ''F'' has characteristic zero, every finite-dimensional representation of a semisimple Lie algebra is [[semisimple representation|semisimple]] (that is, a direct sum of irreducible representations).<ref name="reducibility" /> A finite-dimensional Lie algebra over a field of characteristic zero is called [[reductive Lie algebra|reductive]] if its adjoint representation is semisimple. Every reductive Lie algebra is isomorphic to the product of an abelian Lie algebra and a semisimple Lie algebra.<ref>{{harvnb|Varadarajan|1984|loc=Theorem 3.16.3.}}</ref> For example, <math>\mathfrak{gl}(n,F)</math> is reductive for ''F'' of characteristic zero: for <math>n\geq 2</math>, it is isomorphic to the product :<math>\mathfrak{gl}(n,F) \cong F\times \mathfrak{sl}(n,F),</math> where ''F'' denotes the center of <math>\mathfrak{gl}(n,F)</math>, the 1-dimensional subspace spanned by the identity matrix. Since the special linear Lie algebra <math>\mathfrak{sl}(n,F)</math> is simple, <math>\mathfrak{gl}(n,F)</math> contains few ideals: only 0, the center ''F'', <math>\mathfrak{sl}(n,F)</math>, and all of <math>\mathfrak{gl}(n,F)</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Lie algebra
(section)
Add topic