Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Inner product space
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Notes== {{reflist|group="Note"|refs=<!-- <ref group="Note" name=ConjugateNotation>A line over an expression or symbol, such as <math>\overline{s}</math> or <math>\overline{\langle y, x \rangle},</math> denotes [[Complex conjugate|complex conjugation]]. A scalar <math>s</math> is real if and only if <math>s = \overline{s}.</math></ref> <ref group="Note" name=DefAsPosDefSesquilinear>This is because {{EquationNote|Additivity in the 1st argument|condition (1)}} (that is, linearity in the first argument) and {{EquationNote|Positive definite|positive definiteness}} implies that <math>\langle x, x \rangle</math> is always a real number. And as mentioned before, a sesquilinear form is Hermitian if and only if <math>\langle x, x \rangle</math> is real for all <math>x.</math></ref> <ref group="Note" name=DefByPolarization>Let <math>R(x, y) := \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2\right).</math> If <math>\mathbb{F} = \R</math> then let <math>\langle x,\, y \rangle_P := R(x, y)</math> while if <math>\mathbb{F} = \C</math> then let <math>\langle x,\, y \rangle_P := R(x, y) + i R(x, i y).</math> See the [[polarization identity]] article for more details.</ref> <ref group="Note: name=SuggestsConjHom>If <math>\langle x,\, c y \rangle</math> can be written as <math>\langle x,\, c y \rangle = f(c, y) \langle x,\, y \rangle</math> for some function <math>f</math> (in particular, this assumes that the scalar in front of <math>\langle x,\, y \rangle</math> that results from trying to "pull <math>c</math> out of <math>\langle x,\, c y \rangle</math>" does not depend on <math>x</math>) then <math>\langle y,\, c y \rangle = \overline{c} \langle y,\, y \rangle</math> implies that <math>f(c, y) = \overline{c}</math> (when <math>y \neq 0</math>) and consequently, <math>\langle x,\, c y \rangle = \overline{c} \langle x,\, y \rangle</math> will hold for all <math>x, y, \text{ and } c.</math></ref> --> }} <!-- '''Proofs''' {{reflist|group=proof|refs= <ref group=proof name=ZeroVecProduces0AndRationalHomogeneousProof>{{EquationNote|Homogeneity in the 1st argument}} implies <math> \langle q x, y \rangle = 0 \langle x, y \rangle</math> for all rational <math>q</math> so that <math>\langle \mathbf{0}, y \rangle = \langle 0 y, y \rangle = 0 \langle y, y \rangle = 0.</math> <math>\blacksquare</math> Assume {{EquationNote|Additivity in the 1st argument|additivity in the 1st argument}}. Then <math>\langle \mathbf{0}, y \rangle = \langle \mathbf{0} + \mathbf{0}, y \rangle = \langle \mathbf{0}, y \rangle + \langle \mathbf{0}, y \rangle</math> so adding <math>- \langle \mathbf{0}, y \rangle</math> to both sides proves <math>\langle \mathbf{0}, y \rangle = 0.</math> Consequently, <math>0 = \langle \mathbf{0}, y \rangle = \langle x + (-x), y \rangle = \langle x, y \rangle + \langle -x, y \rangle,</math> which implies <math>\langle - x, y \rangle = - \langle x, y \rangle.</math> Induction shows that <math>\langle m x, y \rangle = m \langle x, y \rangle</math> for all integers <math>m.</math> If <math>n > 0</math> is an integer then <math>\langle x, y \rangle = \langle n \left(\tfrac{1}{n} x\right), y \rangle = n \langle \tfrac{1}{n} x, y \rangle</math> so that <math>\langle \tfrac{1}{n} x, y \rangle = \tfrac{1}{n} \langle x, y \rangle.</math> It follows that <math>\langle q x, y \rangle = q \langle x, y \rangle</math> for all rational <math>q \in \Q.</math> <math>\blacksquare</math> An analogous proof show that {{EquationNote|Additivity in the 2nd argument|additivity in the 2nd argument}} and {{EquationNote|Conjugate homogeneity in the 2nd argument|conjugate homogeneity in the 2nd argument}} each individually imply that <math>\langle x, q y \rangle = q \langle x, y \rangle</math> for all rational <math>q \in \Q.</math></ref> <ref group=proof name=SesqHermEquivProof>Assume that it is a sesquilinear form that satisfies <math>\langle x, x \rangle \in \R</math> for all <math>x.</math> To conclude that <math>\langle x, y \rangle = \overline{\langle y, x \rangle},</math> it is necessary and sufficient to show that the real parts of <math>\langle y, x \rangle</math> and <math>\langle x, y \rangle</math> are equal and that their imaginary parts are negatives of each other. For all <math>x, y,</math> because <math>\langle x + y, x + y \rangle - \langle x, x \rangle - \langle y, y \rangle = \langle y, x \rangle + \langle x, y \rangle</math> and the left hand side is real, <math>\langle y, x \rangle + \langle x, y \rangle</math> is also real, which implies that the <math>0 = \operatorname{im} \left[\langle y, x \rangle + \langle x, y \rangle\right] = \left(\operatorname{im} \langle y, x \rangle\right) + \operatorname{im} \langle x, y \rangle.</math> Similarly, <math>\langle i y, x \rangle + \langle x, i y \rangle \in \R.</math> But sesquilinearity implies <math>\langle i y, x \rangle + \langle x, i y \rangle = i (\langle y, x \rangle - \langle x, y \rangle),</math> which is only possible if the real parts of <math>\langle y, x \rangle</math> and <math>\langle x, y \rangle</math> are equal. <math>\blacksquare</math></ref> <ref group=proof name=HermSymImpliesRealProof>A complex number <math>c</math> is a real number if and only if <math>c = \overline{c}.</math> Using <math>y = x</math> in {{EquationNote|Conjugate symmetry|condition (2)}} gives <math>\langle x, x \rangle = \overline{\langle x, x \rangle},</math> which implies that <math>\langle x, x \rangle</math> is a real number. <math>\blacksquare</math></ref> <ref group=proof name=BilinearRangeIsCProof>Assume that <math>\langle \,\cdot, \cdot\, \rangle</math> is a [[bilinear map]] and that <math>x \in V</math> satisfies <math>\langle x, x \rangle \neq 0.</math> Let <math>N : \mathbb{F} \to \mathbb{F}</math> be defined by <math>N(c) := \langle c x, c x \rangle</math> where bilinearity implies that <math>N(c) = \langle c x, c x \rangle = c^2 \langle x, x \rangle = c^2 N(1)</math> holds for all scalars <math>c.</math> Since <math>N(1) = \langle x, x \rangle \neq 0,</math> the scalar <math>1/N(1)</math> is well-defined and so <math>N(c) = 0</math> if and only if <math>c = 0.</math> If <math>c \in \Complex</math> is a scalar such that <math>c^2 \not\in \R</math> (which implies <math>c \neq 0</math> and <math>\frac{1}{c^2} \not\in \R</math>) then <math>N(1) \in \R</math> implies <math>N(c) = c^2 N(1) \not\in \R</math> and similarly, <math>N(c) \in \R</math> implies <math>N(1) = \frac{1}{c^2} N(c) \not\in \R;</math> this shows that for such a <math>c,</math> at most one of <math>N(1) \text{ and } N(c)</math> can be real. <math>\blacksquare</math> If <math>\mathbb{F} = \Complex</math> and <math>s \in \mathbb{F}</math> then pick <math>c \in \Complex</math> such that <math>c^2 = \frac{s}{N(1)},</math> which implies that <math>N(c) = c^2 N(1) = \frac{s}{N(1)} N(1) = s;</math> thus <math>N(\Complex) = \Complex</math> so <math>N : \Complex \to \Complex</math> is surjective. If <math>\mathbb{F} = \R</math> and <math>R(1) > 0</math> (resp. <math>R(1) < 0</math>) then for any <math>s \geq 0</math> (resp. any <math>s \leq 0</math>), <math>N\left(\sqrt{s/N(1)}\right) = s,</math> which shows that <math>N(\R) = [0, \infty)</math> (resp. <math>N(\R) = (-\infty, 0]</math>). <math>\blacksquare</math></ref> <ref group=proof name=parallelogramLawSatisfiedProof>Note that <math>\|x+y\|^2 = \langle x+y, x+y\rangle = \langle x, x\rangle + \langle x, y\rangle + \langle y, x\rangle + \langle y, y\rangle</math> and <math>\|x-y\|^2 = \langle x-y, x-y\rangle = \langle x, x\rangle - \langle x, y\rangle - \langle y, x\rangle + \langle y, y\rangle,</math> which implies that <math>\|x+y\|^2 + \|x-y\|^2 = 2\langle x, x\rangle + 2\langle y, y\rangle = 2\|x\|^2 + 2\|y\|^2.</math> This proves that <math>\|\,\cdot\,\|</math> satisfies the [[parallelogram law]]. It also follows that <math>\|x+y\|^2 = \|x - y\|^2 + 2[\langle x, y \rangle + \langle y, x \rangle],</math> which proves that <math>\langle x, y \rangle + \langle y, x \rangle</math> is a real number and thus that its [[imaginary part]] is <math>0.</math> This implies that <math>\operatorname{im} \langle x, y \rangle = - \operatorname{im} \langle y, x \rangle.</math> If <math>\mathbb{F} = \Complex</math> then also <math>\langle x, iy \rangle + \langle iy, x \rangle = -[\langle ix, y \rangle + \langle y, ix \rangle].</math> <math>\blacksquare</math></ref> <ref group=proof name=InnerProductOfxANDixProof>Combining <math>\|i x\| = |i| \|x\| = \|x\|</math> and <math>2\|x\|^2 = |1+i|^2 \, \|x\|^2 = \|(1+i)x\|^2 = \langle x + i x, x + i x \rangle = \|x\|^2 + \langle x, ix \rangle + \langle i x, x \rangle + \|ix\|^2</math> proves that <math>0 = \langle x, ix \rangle + \langle i x, x \rangle.</math> <math>\blacksquare</math></ref> <ref group=proof name=RealHomIfContinuousProof>Fix <math>x, y \in V.</math> The equality <math>\langle q x, y \rangle = q \langle x, y \rangle</math> will be discussed first. Define <math>L, R : \R \to \mathbb{F}</math> by <math>L(q) := \langle q x, y \rangle</math> and <math>R(q) := q \langle x, y \rangle.</math> Because <math>\langle q x, y \rangle = q \langle x, y \rangle</math> for all <math>q \in \Q,</math> <math>L</math> and <math>R</math> are equal on a [[Dense set|dense subset]] of <math>\R.</math> Since <math>\langle x, y \rangle</math> is constant, the map <math>R : \R \to \mathbb{F}</math> is continuous (where the [[Hausdorff space]] <math>\mathbb{F},</math> which is either <math>\R</math> or <math>\Complex,</math> has its usual [[Euclidean topology]]). Consequently, if <math>L : \R \to \mathbb{F}</math> is also continuous then <math>L</math> and <math>R</math> will necessarily be equal on all of <math>\R;</math> that is, <math>\langle q x, y \rangle = q \langle x, y \rangle</math> will hold for all {{em|real}} <math>q \in \R.</math> If <math>f : \R \to V \text{ and } g : V \to \mathbb{F}</math> are defined by <math>f(q) := q x</math> and <math>g(v) := \langle v, y \rangle</math> then <math>L = g \circ f.</math> So for <math>L</math> to be continuous, it suffices for there to exist some topology <math>\tau</math> on <math>V</math> that makes both <math>f</math> and <math>g</math> continuous (or even just [[sequentially continuous]]). The map <math>f : \R \to (V, \tau)</math> will automatically be continuous if <math>\tau</math> is a [[topological vector space]] topology, such as a topology induced by a norm. The map <math>g : (V, \tau) \to \mathbb{F}</math> will be continuous if <math>\langle \,\cdot, \cdot\, \rangle : V \times V \to \mathbb{F}</math> is [[separately continuous]] (which will be true if <math>\langle \,\cdot, \cdot\, \rangle</math> is continuous). The discussion of the equality <math>\langle x, q y \rangle = q \langle x, y \rangle</math> is nearly identical, with the main difference being that <math>L, f, g</math> must be redefined as <math>L(q) := \langle x, q y \rangle,</math> <math>f(q) := q y,</math> and <math>g(v) := \langle x, v \rangle.</math> <math>\blacksquare</math></ref> <ref group=proof name=LinAndHermSymImplyAntilinearProof>Let <math>x, y, z</math> be vectors and let <math>s</math> be a scalar. Then <math>\langle x, s y \rangle = \overline{\langle s y, x \rangle} = \overline{s} \overline{\langle y, x \rangle} = \overline{s} \langle x, y \rangle</math> and <math>\langle x, y + z \rangle = \overline{\langle y + z, x \rangle} = \overline{\langle y, x \rangle} + \overline{\langle z, x \rangle} = \langle x, y \rangle + \langle x, z \rangle.</math> <math>\blacksquare</math></ref> }} -->
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Inner product space
(section)
Add topic