Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Feynman diagram
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Vacuum bubbles ==== An immediate consequence of the linked-cluster theorem is that all vacuum bubbles, diagrams without external lines, cancel when calculating correlation functions. A correlation function is given by a ratio of path-integrals: :<math> \left\langle \phi_1(x_1) \cdots \phi_n(x_n)\right\rangle = \frac{\displaystyle\int e^{-S} \phi_1(x_1) \cdots\phi_n(x_n)\, D\phi }{\displaystyle \int e^{-S}\, D\phi}\,.</math> The top is the sum over all Feynman diagrams, including disconnected diagrams that do not link up to external lines at all. In terms of the connected diagrams, the numerator includes the same contributions of vacuum bubbles as the denominator: :<math> \int e^{-S}\phi_1(x_1)\cdots\phi_n(x_n)\, D\phi = \left(\sum E_i\right)\left( \exp\left(\sum_i C_i\right) \right)\,.</math> Where the sum over {{mvar|E}} diagrams includes only those diagrams each of whose connected components end on at least one external line. The vacuum bubbles are the same whatever the external lines, and give an overall multiplicative factor. The denominator is the sum over all vacuum bubbles, and dividing gets rid of the second factor. The vacuum bubbles then are only useful for determining {{mvar|Z}} itself, which from the definition of the path integral is equal to: :<math> Z= \int e^{-S} D\phi = e^{-HT} = e^{-\rho V} </math> where {{mvar|Ο}} is the energy density in the vacuum. Each vacuum bubble contains a factor of {{math|''Ξ΄''(''k'')}} zeroing the total {{mvar|k}} at each vertex, and when there are no external lines, this contains a factor of {{math|''Ξ΄''(0)}}, because the momentum conservation is over-enforced. In finite volume, this factor can be identified as the total volume of space time. Dividing by the volume, the remaining integral for the vacuum bubble has an interpretation: it is a contribution to the energy density of the vacuum.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Feynman diagram
(section)
Add topic