Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cauchy distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Multivariate Cauchy distribution=== A [[random vector]] <math>X=(X_1, \ldots, X_k)^T</math> is said to have the multivariate Cauchy distribution if every linear combination of its components <math>Y=a_1X_1+ \cdots + a_kX_k</math> has a Cauchy distribution. That is, for any constant vector <math>a\in \mathbb R^k</math>, the random variable <math>Y=a^TX</math> should have a univariate Cauchy distribution.<ref name=ferg2>{{cite journal|last1=Ferguson|first1=Thomas S.|title=A Representation of the Symmetric Bivariate Cauchy Distribution|journal=The Annals of Mathematical Statistics |volume= 33|issue= 4|pages=1256β1266|year=1962 |jstor=2237984|doi=10.1214/aoms/1177704357|url=http://projecteuclid.org/download/pdf_1/euclid.aoms/1177704357|access-date=2017-01-07 |doi-access=free}}</ref> The characteristic function of a multivariate Cauchy distribution is given by: <math display="block">\varphi_X(t) = e^{ix_0(t)-\gamma(t)}, \!</math> where <math>x_0(t)</math> and <math>\gamma(t)</math> are real functions with <math>x_0(t)</math> a [[homogeneous function]] of degree one and <math>\gamma(t)</math> a positive homogeneous function of degree one.<ref name=ferg2/> More formally:<ref name=ferg2/> <math display="block">\begin{align} x_0(at) &= a x_0(t), \\ \gamma (at) &= |a| \gamma (t), \end{align}</math> for all <math>t</math>. An example of a bivariate Cauchy distribution can be given by:<ref name=bivar>{{cite journal|title=Non-linear Integral Equations to Approximate Bivariate Densities with Given Marginals and Dependence Function|last1=Molenberghs|first1=Geert|last2=Lesaffre|first2=Emmanuel|journal=Statistica Sinica|volume=7|year=1997|pages=713–738|url=http://www3.stat.sinica.edu.tw/statistica/oldpdf/A7n310.pdf|url-status=dead|archive-url=https://web.archive.org/web/20090914055538/http://www3.stat.sinica.edu.tw/statistica/oldpdf/A7n310.pdf|archive-date=2009-09-14}}</ref> <math display="block">f(x, y; x_0,y_0,\gamma) = \frac{1}{2 \pi} \, \frac{\gamma}{{\left({\left(x - x_0\right)}^2 + {\left(y - y_0\right)}^2 + \gamma^2\right)}^{3/2}} .</math> Note that in this example, even though the covariance between <math>x</math> and <math>y</math> is 0, <math>x</math> and <math>y</math> are not [[Independence (probability theory)|statistically independent]].<ref name=bivar/> We also can write this formula for complex variable. Then the probability density function of complex Cauchy is : <math display="block">f(z; z_0,\gamma) = \frac{1}{2\pi} \,\frac{\gamma}{{\left({\left|z - z_0\right|}^2 + \gamma^2\right)}^{3/2} } .</math> Like how the standard Cauchy distribution is the Student t-distribution with one degree of freedom, the multidimensional Cauchy density is the [[multivariate Student distribution]] with one degree of freedom. The density of a <math>k</math> dimension Student distribution with one degree of freedom is: <math display="block">f(\mathbf{x}; \boldsymbol{\mu},\mathbf{\Sigma}, k)= \frac{\Gamma{\left(\frac{1+k}{2}\right)}}{\Gamma(\frac{1}{2}) \pi^{\frac{k}{2}} \left|\mathbf{\Sigma}\right|^{\frac{1}{2}} \left[1 + ({\mathbf x}-{\boldsymbol\mu})^\mathsf{T} {\mathbf\Sigma}^{-1} ({\mathbf x}-{\boldsymbol\mu})\right]^{\frac{1+k}{2}}} .</math> The properties of multidimensional Cauchy distribution are then special cases of the multivariate Student distribution.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cauchy distribution
(section)
Add topic