Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Topological vector space
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Other properties=== '''Meager, nowhere dense, and Baire''' A [[Absolutely convex set|disk]] in a TVS is not [[nowhere dense]] if and only if its closure is a neighborhood of the origin.{{sfn|Narici|Beckenstein|2011|pp=371-423}} A vector subspace of a TVS that is closed but not open is [[nowhere dense]].{{sfn|Narici|Beckenstein|2011|pp=371-423}} Suppose <math>X</math> is a TVS that does not carry the [[indiscrete topology]]. Then <math>X</math> is a [[Baire space]] if and only if <math>X</math> has no balanced absorbing nowhere dense subset.{{sfn|Narici|Beckenstein|2011|pp=371-423}} A TVS <math>X</math> is a Baire space if and only if <math>X</math> is [[nonmeager]], which happens if and only if there does not exist a [[nowhere dense]] set <math>D</math> such that <math display=inline>X = \bigcup_{n \in \N} n D.</math>{{sfn|Narici|Beckenstein|2011|pp=371-423}} Every [[nonmeager]] locally convex TVS is a [[barrelled space]].{{sfn|Narici|Beckenstein|2011|pp=371-423}} '''Important algebraic facts and common misconceptions''' If <math>S \subseteq X</math> then <math>2 S \subseteq S + S</math>; if <math>S</math> is convex then equality holds. For an example where equality does {{em|not}} hold, let <math>x</math> be non-zero and set <math>S = \{- x, x\};</math> <math>S = \{x, 2 x\}</math> also works. A subset <math>C</math> is convex if and only if <math>(s + t) C = s C + t C</math> for all positive real <math>s > 0 \text{ and } t > 0,</math>{{sfn|Rudin|1991|p=38}} or equivalently, if and only if <math>t C + (1 - t) C \subseteq C</math> for all <math>0 \leq t \leq 1.</math>{{sfn|Rudin|1991|p=6}} The [[convex balanced hull]] of a set <math>S \subseteq X</math> is equal to the convex hull of the [[balanced hull]] of <math>S;</math> that is, it is equal to <math>\operatorname{co} (\operatorname{bal} S).</math> But in general, <math display=block>\operatorname{bal} (\operatorname{co} S) ~\subseteq~ \operatorname{cobal} S ~=~ \operatorname{co} (\operatorname{bal} S),</math> where the inclusion might be strict since the [[balanced hull]] of a convex set need not be convex (counter-examples exist even in <math>\R^2</math>). If <math>R, S \subseteq X</math> and <math>a</math> is a scalar then{{sfn|Narici|Beckenstein|2011|pp=67-113}} <math display=block>a(R + S) = aR + a S,~ \text{ and } ~\operatorname{co} (R + S) = \operatorname{co} R + \operatorname{co} S,~ \text{ and } ~\operatorname{co} (a S) = a \operatorname{co} S.</math> If <math>R, S \subseteq X</math> are convex non-empty disjoint sets and <math>x \not\in R \cup S,</math> then <math>S \cap \operatorname{co} (R \cup \{x\}) = \varnothing </math> or <math>R \cap \operatorname{co} (S \cup \{x\}) = \varnothing.</math> In any non-trivial vector space <math>X,</math> there exist two disjoint non-empty convex subsets whose union is <math>X.</math> '''Other properties''' Every TVS topology can be generated by a {{em|family}} of [[F-seminorm|''F''-seminorms]].{{sfn|Swartz|1992|p=35}} <!--START: REMOVED INFO- If <math>f : X \to \R</math> is a subadditive function (that is, <math>f(x + y) \leq f(x) + f(y)</math> for all <math>x, y \in X</math>) such as a [[sublinear function]], [[seminorm]], or [[Linear form|linear functional]], then <math>f</math> is continuous at the origin if and only if it is uniformly continuous on <math>X.</math>{{sfn|Narici|Beckenstein|2011|pp=192-193}} If <math>f : X \to \R</math> is a subadditive and satisfies <math>f(0) = 0</math> then <math>f</math> is continuous if its absolute value <math>|f| : X \to [0, \infty)</math> is continuous. -END:REMOVED INFO--> If <math>P(x)</math> is some unary [[Predicate (mathematical logic)|predicate]] (a true or false statement dependent on <math>x \in X</math>) then for any <math>z \in X,</math> <math>z + \{x \in X : P(x)\} = \{x \in X : P(x - z)\}.</math><ref group=proof><math display=block>z + \{x \in X : P(x)\} = \{z + x : x \in X, P(x)\} = \{z + x : x \in X, P((z + x) - z)\}</math> and so using <math>y = z + x</math> and the fact that <math>z + X = X,</math> this is equal to <math display=block>\{y : y - z \in X, P(y - z)\} = \{y : y \in X, P(y - z)\} = \{y \in X : P(y - z)\}.</math> [[Q.E.D.]] <math>\blacksquare</math></ref> So for example, if <math>P(x)</math> denotes "<math>\|x\| < 1</math>" then for any <math>z \in X,</math> <math>z + \{x \in X : \|x\| < 1\} = \{x \in X : \|x - z\| < 1\}.</math> Similarly, if <math>s \neq 0</math> is a scalar then <math>s \{x \in X : P(x)\} = \left\{x \in X : P\left(\tfrac{1}{s} x\right)\right\}.</math> The elements <math>x \in X</math> of these sets must range over a vector space (that is, over <math>X</math>) rather than not just a subset or else these equalities are no longer guaranteed; similarly, <math>z</math> must belong to this vector space (that is, <math>z \in X</math>).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Topological vector space
(section)
Add topic