Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Support vector machine
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Multiclass SVM === Multiclass SVM aims to assign labels to instances by using support vector machines, where the labels are drawn from a finite set of several elements. The dominant approach for doing so is to reduce the single [[multiclass problem]] into multiple [[binary classification]] problems.<ref name="duan2005">{{Cite book |last1=Duan |first1=Kai-Bo |last2=Keerthi |first2=S. Sathiya |chapter=Which Is the Best Multiclass SVM Method? An Empirical Study |doi=10.1007/11494683_28 |title=Multiple Classifier Systems |series=[[Lecture Notes in Computer Science|LNCS]] |volume=3541 |pages=278–285 |year=2005 |isbn=978-3-540-26306-7 |citeseerx=10.1.1.110.6789 |chapter-url=https://www.cs.iastate.edu/~honavar/multiclass-svm2.pdf |access-date=2019-07-18 |archive-date=2013-05-03 |archive-url=https://web.archive.org/web/20130503183745/http://www.cs.iastate.edu/~honavar/multiclass-svm2.pdf |url-status=dead }}</ref> Common methods for such reduction include:<ref name="duan2005" /><ref name="hsu2002">{{cite journal |title=A Comparison of Methods for Multiclass Support Vector Machines |year=2002 |journal=IEEE Transactions on Neural Networks |last1=Hsu |first1=Chih-Wei |last2=Lin |first2=Chih-Jen |volume=13 |issue=2 |pages=415–25 |name-list-style=amp |url=http://www.cs.iastate.edu/~honavar/multiclass-svm.pdf |pmid=18244442 |doi=10.1109/72.991427 |access-date=2018-01-08 |archive-date=2013-05-03 |archive-url=https://web.archive.org/web/20130503183743/http://www.cs.iastate.edu/~honavar/multiclass-svm.pdf |url-status=dead }}</ref> * Building binary classifiers that distinguish between one of the labels and the rest (''one-versus-all'') or between every pair of classes (''one-versus-one''). Classification of new instances for the one-versus-all case is done by a winner-takes-all strategy, in which the classifier with the highest-output function assigns the class (it is important that the output functions be calibrated to produce comparable scores). For the one-versus-one approach, classification is done by a max-wins voting strategy, in which every classifier assigns the instance to one of the two classes, then the vote for the assigned class is increased by one vote, and finally the class with the most votes determines the instance classification. * [[Directed acyclic graph]] SVM (DAGSVM)<ref>{{cite book |chapter=Large margin DAGs for multiclass classification |editor1=Solla, Sara A.|editor1-link=Sara Solla |editor2=Leen, Todd K. |editor3=Müller, Klaus-Robert |editor3-link=Klaus-Robert Müller |title=Advances in Neural Information Processing Systems |publisher=MIT Press |year=2000 |chapter-url=http://www.wisdom.weizmann.ac.il/~bagon/CVspring07/files/DAGSVM.pdf |pages=547–553 |last1=Platt |first1=John |author-link2=Nello Cristianini |last2=Cristianini |first2=Nello |author-link3=John Shawe-Taylor |last3=Shawe-Taylor |first3=John |url-status=live |archive-url=https://web.archive.org/web/20120616221540/http://www.wisdom.weizmann.ac.il/~bagon/CVspring07/files/DAGSVM.pdf |archive-date=2012-06-16 }}</ref> * [[Error correcting code|Error-correcting output codes]]<ref>{{cite journal |title=Solving Multiclass Learning Problems via Error-Correcting Output Codes |journal=Journal of Artificial Intelligence Research |year=1995 |url=http://www.jair.org/media/105/live-105-1426-jair.pdf |pages=263–286 |last1=Dietterich |first1=Thomas G. |last2=Bakiri |first2=Ghulum |bibcode=1995cs........1101D |arxiv=cs/9501101 |volume=2 |url-status=live |archive-url=https://web.archive.org/web/20130509061344/http://www.jair.org/media/105/live-105-1426-jair.pdf |archive-date=2013-05-09 |doi=10.1613/jair.105 |s2cid=47109072 }}</ref> Crammer and Singer proposed a multiclass SVM method which casts the [[multiclass classification]] problem into a single optimization problem, rather than decomposing it into multiple binary classification problems.<ref>{{cite journal |title=On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines |year=2001 |url=http://jmlr.csail.mit.edu/papers/volume2/crammer01a/crammer01a.pdf |journal=Journal of Machine Learning Research |volume=2 |pages=265–292 |last1=Crammer |first1=Koby |last2=Singer |first2=Yoram |name-list-style=amp |url-status=live |archive-url=https://web.archive.org/web/20150829102651/http://jmlr.csail.mit.edu/papers/volume2/crammer01a/crammer01a.pdf |archive-date=2015-08-29 }}</ref> See also Lee, Lin and Wahba<ref>{{cite journal |title=Multicategory Support Vector Machines |year=2001 |journal=Computing Science and Statistics |volume=33 |url=http://www.interfacesymposia.org/I01/I2001Proceedings/YLee/YLee.pdf |last1=Lee |first1=Yoonkyung |last2=Lin |first2=Yi |last3=Wahba |first3=Grace |name-list-style=amp |url-status=usurped |archive-url=https://web.archive.org/web/20130617093314/http://www.interfacesymposia.org/I01/I2001Proceedings/YLee/YLee.pdf |archive-date=2013-06-17 }}</ref><ref>{{Cite journal |doi=10.1198/016214504000000098 |title=Multicategory Support Vector Machines |journal=Journal of the American Statistical Association |volume=99 |issue=465 |pages=67–81 |year=2004 |last1=Lee |first1=Yoonkyung |last2=Lin |first2=Yi |last3=Wahba |first3=Grace |citeseerx=10.1.1.22.1879 |s2cid=7066611 }}</ref> and Van den Burg and Groenen.<ref>{{Cite journal |title=GenSVM: A Generalized Multiclass Support Vector Machine |year=2016|url=http://jmlr.org/papers/volume17/14-526/14-526.pdf |journal=Journal of Machine Learning Research |volume=17|issue=224|pages=1–42|last1=Van den Burg|first1=Gerrit J. J. |last2=Groenen |first2=Patrick J. F.|name-list-style=amp}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Support vector machine
(section)
Add topic