Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Moment of inertia
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Definition === For a rigid object of <math>N</math> point masses <math>m_{k}</math>, the moment of inertia [[tensor]] is given by <math display="block"> \mathbf{I} = \begin{bmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{bmatrix}. </math> Its components are defined as <math display="block">I_{ij} \ \stackrel{\mathrm{def}}{=}\ \sum_{k=1}^{N} m_{k}\left(\left\|\mathbf{r}_k\right\|^{2}\delta_{ij} - x_{i}^{(k)}x_{j}^{(k)}\right)</math> where * <math>i</math>, <math>j</math> is equal to 1, 2 or 3 for <math>x</math>, <math>y</math>, and <math>z</math>, respectively, * <math>\mathbf{r}_k = \left(x_1^{(k)}, x_2^{(k)}, x_3^{(k)}\right)</math> is the vector to the point mass <math>m_k</math> from the point about which the tensor is calculated and * <math>\delta_{ij}</math> is the [[Kronecker delta]]. Note that, by the definition, <math>\mathbf{I}</math> is a [[symmetric tensor]]. The diagonal elements are more succinctly written as <math display="block">\begin{align} I_{xx} \ &\stackrel{\mathrm{def}}{=}\ \sum_{k=1}^{N} m_{k} \left(y_{k}^{2} + z_{k}^{2}\right), \\ I_{yy} \ &\stackrel{\mathrm{def}}{=}\ \sum_{k=1}^{N} m_{k} \left(x_{k}^{2} + z_{k}^{2}\right), \\ I_{zz} \ &\stackrel{\mathrm{def}}{=}\ \sum_{k=1}^{N} m_{k} \left(x_{k}^{2} + y_{k}^{2}\right), \end{align}</math> while the off-diagonal elements, also called the '''{{Interlanguage link|Produit d'inertie|fr|lt=products of inertia}}''', are <math display="block">\begin{align} I_{xy} = I_{yx} \ &\stackrel{\mathrm{def}}{=}\ -\sum_{k=1}^{N} m_{k} x_{k} y_{k}, \\ I_{xz} = I_{zx} \ &\stackrel{\mathrm{def}}{=}\ -\sum_{k=1}^{N} m_{k} x_{k} z_{k}, \\ I_{yz} = I_{zy} \ &\stackrel{\mathrm{def}}{=}\ -\sum_{k=1}^{N} m_{k} y_{k} z_{k}. \end{align}</math> Here <math>I_{xx}</math> denotes the moment of inertia around the <math>x</math>-axis when the objects are rotated around the x-axis, <math>I_{xy}</math> denotes the moment of inertia around the <math>y</math>-axis when the objects are rotated around the <math>x</math>-axis, and so on. These quantities can be generalized to an object with distributed mass, described by a mass density function, in a similar fashion to the scalar moment of inertia. One then has <math display="block">\mathbf{I} = \iiint_V \rho(x,y,z) \left( \|\mathbf{r}\|^2 \mathbf{E}_{3} - \mathbf{r}\otimes \mathbf{r}\right)\, dx \, dy \, dz,</math> where <math>\mathbf{r}\otimes \mathbf{r}</math> is their [[outer product]], '''E'''<sub>3</sub> is the 3Γ3 [[identity matrix]], and ''V'' is a region of space completely containing the object. Alternatively it can also be written in terms of the [[Cross product#Conversion to matrix multiplication|angular momentum operator]] <math>[\mathbf r]\mathbf x = \mathbf r\times\mathbf x</math>: <math display="block">\mathbf{I} = \iiint_V \rho(\mathbf{r}) [\mathbf r]^\textsf{T}[\mathbf r] \, dV = -\iiint_{Q} \rho(\mathbf{r}) [\mathbf r]^2 \, dV </math> The inertia tensor can be used in the same way as the inertia matrix to compute the scalar moment of inertia about an arbitrary axis in the direction <math>\mathbf{n}</math>, <math display="block">I_n = \mathbf{n}\cdot\mathbf{I}\cdot\mathbf{n},</math> where the [[dot product]] is taken with the corresponding elements in the component tensors. A product of inertia term such as <math>I_{12}</math> is obtained by the computation <math display="block">I_{12} = \mathbf{e}_1\cdot\mathbf{I}\cdot\mathbf{e}_2,</math> and can be interpreted as the moment of inertia around the <math>x</math>-axis when the object rotates around the <math>y</math>-axis. The components of tensors of degree two can be assembled into a matrix. For the inertia tensor this matrix is given by, <math display="block">\begin{align} \mathbf{I} &= \begin{bmatrix} I_{11} & I_{12} & I_{13} \\[1.8ex] I_{21} & I_{22} & I_{23} \\[1.8ex] I_{31} & I_{32} & I_{33} \end{bmatrix} = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\[1.8ex] I_{yx} & I_{yy} & I_{yz} \\[1.8ex] I_{zx} & I_{zy} & I_{zz} \end{bmatrix} \\[2ex] &= \sum_{k=1}^N \begin{bmatrix} m_{k} \left(y_{k}^2 + z_{k}^2\right) & - m_{k} x_{k} y_{k} & - m_{k} x_{k} z_{k} \\[1ex] - m_{k} x_{k} y_{k} & m_{k} \left(x_{k}^2 + z_{k}^2\right) & - m_{k} y_{k} z_{k} \\[1ex] - m_{k} x_{k} z_{k} & - m_{k} y_{k} z_{k} & m_{k} \left(x_{k}^2 + y_{k}^2\right) \end{bmatrix}. \end{align} </math> It is common in rigid body mechanics to use notation that explicitly identifies the <math>x</math>, <math>y</math>, and <math>z</math>-axes, such as <math>I_{xx}</math> and <math>I_{xy}</math>, for the components of the inertia tensor.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Moment of inertia
(section)
Add topic