Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Lp space
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Weak {{math|''L<sup>p</sup>''}}=== Let <math>(S, \Sigma, \mu)</math> be a measure space, and <math>f</math> a [[measurable function]] with real or complex values on <math>S.</math> The [[cumulative distribution function|distribution function]] of <math>f</math> is defined for <math>t \geq 0</math> by <math display="block">\lambda_f(t) = \mu\{x \in S : |f(x)| > t\}.</math> If <math>f</math> is in <math>L^p(S, \mu)</math> for some <math>p</math> with <math>1 \leq p < \infty,</math> then by [[Markov's inequality]], <math display="block">\lambda_f(t) \leq \frac{\|f\|_p^p}{t^p}</math> A function <math>f</math> is said to be in the space '''weak <math>L^p(S, \mu)</math>''', or <math>L^{p,w}(S, \mu),</math> if there is a constant <math>C > 0</math> such that, for all <math>t > 0,</math> <math display="block">\lambda_f(t) \leq \frac{C^p}{t^p}</math> The best constant <math>C</math> for this inequality is the <math>L^{p,w}</math>-norm of <math>f,</math> and is denoted by <math display="block">\|f\|_{p,w} = \sup_{t > 0} ~ t \lambda_f^{1/p}(t).</math> The weak <math>L^p</math> coincide with the [[Lorentz space]]s <math>L^{p,\infty},</math> so this notation is also used to denote them. The <math>L^{p,w}</math>-norm is not a true norm, since the [[triangle inequality]] fails to hold. Nevertheless, for <math>f</math> in <math>L^p(S, \mu),</math> <math display="block">\|f\|_{p,w} \leq \|f\|_p</math> and in particular <math>L^p(S, \mu) \subset L^{p,w}(S, \mu).</math> In fact, one has <math display="block">\|f\|^p_{L^p} = \int |f(x)|^p d\mu(x) \geq \int_{\{|f(x)| > t \}} t^p + \int_{\{|f(x)| \leq t \}} |f|^p \geq t^p \mu(\{|f| > t \}),</math> and raising to power <math>1/p</math> and taking the supremum in <math>t</math> one has <math display="block">\|f\|_{L^p} \geq \sup_{t > 0} t \; \mu(\{|f| > t \})^{1/p} = \|f\|_{L^{p,w}}.</math> Under the convention that two functions are equal if they are equal <math>\mu</math> almost everywhere, then the spaces <math>L^{p,w}</math> are complete {{harv|Grafakos|2004}}. For any <math>0 < r < p</math> the expression <math display="block">\|| f |\|_{L^{p,\infty}} = \sup_{0<\mu(E)<\infty} \mu(E)^{-1/r + 1/p} \left(\int_E |f|^r\, d\mu\right)^{1/r}</math> is comparable to the <math>L^{p,w}</math>-norm. Further in the case <math>p > 1,</math> this expression defines a norm if <math>r = 1.</math> Hence for <math>p > 1</math> the weak <math>L^p</math> spaces are [[Banach space]]s {{harv|Grafakos|2004}}. A major result that uses the <math>L^{p,w}</math>-spaces is the [[Marcinkiewicz interpolation|Marcinkiewicz interpolation theorem]], which has broad applications to [[harmonic analysis]] and the study of [[singular integrals]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Lp space
(section)
Add topic