Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Loop quantum gravity
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Spin foam from the master constraint === The master constraint is easily generalized to incorporate the other constraints. It is then referred to as the extended master constraint, denoted <math>M_E</math>. We can define the extended master constraint which imposes both the Hamiltonian constraint and spatial diffeomorphism constraint as a single operator, <math display="block">M_E = \int_\Sigma d^3x {H (x)^2 - q^{ab} V_a (x) V_b (x) \over \sqrt{\det (q)}} .</math> Setting this single constraint to zero is equivalent to <math>H(x) = 0</math> and <math>V_a (x) = 0</math> for all <math>x</math> in <math>\Sigma</math>. This constraint implements the spatial diffeomorphism and Hamiltonian constraint at the same time on the Kinematic Hilbert space. The physical inner product is then defined as <math display="block">\langle\phi, \psi\rangle_{\text{Phys}} = \lim_{T \to \infty} \left\langle\phi, \int_{-T}^T dt e^{i t \hat{M}_E} \psi\right\rangle</math> (as <math display="inline">\delta (\hat{M_E}) = \lim_{T \to \infty} \int_{-T}^T dt e^{i t \hat{M}_E}</math>). A spin foam representation of this expression is obtained by splitting the <math>t</math>-parameter in discrete steps and writing <math display="block">e^{i t \hat{M}_E} = \lim_{n \to \infty} \left [e^{i t \hat{M}_E / n} \right]^n = \lim_{n \to \infty} [1 + i t \hat{M}_E / n]^n.</math> The spin foam description then follows from the application of <math>[1 + i t \hat{M}_E / n]</math> on a spin network resulting in a linear combination of new spin networks whose graph and labels have been modified. Obviously an approximation is made by truncating the value of <math>n</math> to some finite integer. An advantage of the extended master constraint is that we are working at the kinematic level and so far it is only here we have access semiclassical coherent states. Moreover, one can find none graph changing versions of this master constraint operator, which are the only type of operators appropriate for these coherent states.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Loop quantum gravity
(section)
Add topic