Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Kalman filter
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Fixed-lag smoother == {{More citations needed section|date=December 2010}} The optimal fixed-lag smoother provides the optimal estimate of <math>\hat{\mathbf{x}}_{k-N \mid k}</math> for a given fixed-lag <math>N</math> using the measurements from <math>\mathbf{z}_1</math> to <math>\mathbf{z}_k</math>.<ref>{{cite book|last1=Anderson|first1=Brian D. O.|last2=Moore|first2=John B.|title=Optimal Filtering|date=1979|publisher=Prentice Hall, Inc.|location=Englewood Cliffs, NJ|isbn=978-0-13-638122-8|pages=176β190}}</ref> It can be derived using the previous theory via an augmented state, and the main equation of the filter is the following: :<math> \begin{bmatrix} \hat{\mathbf{x}}_{t \mid t} \\ \hat{\mathbf{x}}_{t-1 \mid t} \\ \vdots \\ \hat{\mathbf{x}}_{t-N+1 \mid t} \\ \end{bmatrix} = \begin{bmatrix} \mathbf{I} \\ 0 \\ \vdots \\ 0 \\ \end{bmatrix} \hat{\mathbf{x}}_{t \mid t-1} + \begin{bmatrix} 0 & \ldots & 0 \\ \mathbf{I} & 0 & \vdots \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \mathbf{I} \\ \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}}_{t-1 \mid t-1} \\ \hat{\mathbf{x}}_{t-2 \mid t-1} \\ \vdots \\ \hat{\mathbf{x}}_{t-N+1 \mid t-1} \\ \end{bmatrix} + \begin{bmatrix} \mathbf{K}^{(0)} \\ \mathbf{K}^{(1)} \\ \vdots \\ \mathbf{K}^{(N-1)} \\ \end{bmatrix} \mathbf{y}_{t \mid t-1} </math> where: * <math> \hat{\mathbf{x}}_{t \mid t-1} </math> is estimated via a standard Kalman filter; * <math> \mathbf{y}_{t \mid t-1} = \mathbf{z}_t - \mathbf{H}\hat{\mathbf{x}}_{t \mid t-1} </math> is the innovation produced considering the estimate of the standard Kalman filter; * the various <math> \hat{\mathbf{x}}_{t-i \mid t} </math> with <math> i = 1, \ldots, N-1 </math> are new variables; i.e., they do not appear in the standard Kalman filter; * the gains are computed via the following scheme: *:<math> \mathbf{K}^{(i+1)} = \mathbf{P}^{(i)} \mathbf{H}^\textsf{T} \left[ \mathbf{H} \mathbf{P} \mathbf{H}^\textsf{T} + \mathbf{R} \right]^{-1} </math> :and ::<math> \mathbf{P}^{(i)} = \mathbf{P} \left[ \left( \mathbf{F} - \mathbf{K} \mathbf{H} \right)^\textsf{T} \right]^i </math> :where <math> \mathbf{P} </math> and <math> \mathbf{K} </math> are the prediction error covariance and the gains of the standard Kalman filter (i.e., <math> \mathbf{P}_{t \mid t-1} </math>). If the estimation error covariance is defined so that :<math> \mathbf{P}_i := E \left[ \left( \mathbf{x}_{t-i} - \hat{\mathbf{x}}_{t-i \mid t} \right)^{*} \left( \mathbf{x}_{t-i} - \hat{\mathbf{x}}_{t-i \mid t} \right) \mid z_1 \ldots z_t \right], </math> then we have that the improvement on the estimation of <math> \mathbf{x}_{t-i} </math> is given by: :<math> \mathbf{P} - \mathbf{P}_i = \sum_{j = 0}^i \left[ \mathbf{P}^{(j)} \mathbf{H}^\textsf{T} \left( \mathbf{H} \mathbf{P} \mathbf{H}^\textsf{T} + \mathbf{R} \right)^{-1} \mathbf{H} \left( \mathbf{P}^{(i)} \right)^\textsf{T} \right] </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Kalman filter
(section)
Add topic