Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Hyperbolic functions
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Hyperbolic functions for complex numbers== {| style="text-align:center" |+ Hyperbolic functions in the complex plane |[[Image:Complex Sinh.jpg|1000x140px|none]] |[[Image:Complex Cosh.jpg|1000x140px|none]] |[[Image:Complex Tanh.jpg|1000x140px|none]] |[[Image:Complex Coth.jpg|1000x140px|none]] |[[Image:Complex Sech.jpg|1000x140px|none]] |[[Image:Complex Csch.jpg|1000x140px|none]] |- |<math>\sinh(z)</math> |<math>\cosh(z)</math> |<math>\tanh(z)</math> |<math>\coth(z)</math> |<math>\operatorname{sech}(z)</math> |<math>\operatorname{csch}(z)</math> |} Since the [[exponential function]] can be defined for any [[complex number|complex]] argument, we can also extend the definitions of the hyperbolic functions to complex arguments. The functions {{math|sinh ''z''}} and {{math|cosh ''z''}} are then [[Holomorphic function|holomorphic]]. Relationships to ordinary trigonometric functions are given by [[Euler's formula]] for complex numbers: <math display="block">\begin{align} e^{i x} &= \cos x + i \sin x \\ e^{-i x} &= \cos x - i \sin x \end{align}</math> so: <math display="block">\begin{align} \cosh(ix) &= \frac{1}{2} \left(e^{i x} + e^{-i x}\right) = \cos x \\ \sinh(ix) &= \frac{1}{2} \left(e^{i x} - e^{-i x}\right) = i \sin x \\ \cosh(x+iy) &= \cosh(x) \cos(y) + i \sinh(x) \sin(y) \\ \sinh(x+iy) &= \sinh(x) \cos(y) + i \cosh(x) \sin(y) \\ \tanh(ix) &= i \tan x \\ \cosh x &= \cos(ix) \\ \sinh x &= - i \sin(ix) \\ \tanh x &= - i \tan(ix) \end{align}</math> Thus, hyperbolic functions are [[periodic function|periodic]] with respect to the imaginary component, with period <math>2 \pi i</math> (<math>\pi i</math> for hyperbolic tangent and cotangent).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Hyperbolic functions
(section)
Add topic