Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cholesky decomposition
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Proof by limiting argument === The above algorithms show that every positive definite matrix <math display=inline> \mathbf{A} </math> has a Cholesky decomposition. This result can be extended to the positive semi-definite case by a limiting argument. The argument is not fully constructive, i.e., it gives no explicit numerical algorithms for computing Cholesky factors. If <math display=inline> \mathbf{A} </math> is an <math display=inline> n \times n </math> [[Positive-definite matrix|positive semi-definite matrix]], then the sequence <math display="inline"> \left(\mathbf{A}_k\right)_k := \left(\mathbf{A} + \frac{1}{k} \mathbf{I}_n\right)_k </math> consists of [[Positive-definite matrix|positive definite matrices]]. (This is an immediate consequence of, for example, the spectral mapping theorem for the polynomial functional calculus.) Also, <math display=block> \mathbf{A}_k \rightarrow \mathbf{A} \quad \text{for} \quad k \rightarrow \infty </math> in [[operator norm]]. From the positive definite case, each <math display=inline> \mathbf{A}_k </math> has Cholesky decomposition <math display=inline> \mathbf{A}_k = \mathbf{L}_k\mathbf{L}_k^* </math>. By property of the operator norm, <math display=block>\| \mathbf{L}_k \|^2 \leq \| \mathbf{L}_k \mathbf{L}_k^* \| = \| \mathbf{A}_k \| \,.</math> The <math display=inline>\leq</math> holds because <math display=inline>M_n(\mathbb{C})</math> equipped with the operator norm is a C* algebra. So <math display=inline> \left(\mathbf{L}_k \right)_k</math> is a bounded set in the [[Banach space]] of operators, therefore [[relatively compact]] (because the underlying vector space is finite-dimensional). Consequently, it has a convergent subsequence, also denoted by <math display=inline> \left( \mathbf{L}_k \right)_k</math>, with limit <math display=inline> \mathbf{L}</math>. It can be easily checked that this <math display=inline> \mathbf{L}</math> has the desired properties, i.e. <math display=inline> \mathbf{A} = \mathbf{L}\mathbf{L}^* </math>, and <math display=inline> \mathbf{L}</math> is lower triangular with non-negative diagonal entries: for all <math display=inline> x</math> and <math display=inline> y</math>, <math display=block> \langle \mathbf{A} x, y \rangle = \left\langle \lim \mathbf{A}_k x, y \right\rangle = \langle \lim \mathbf{L}_k \mathbf{L}_k^* x, y \rangle = \langle \mathbf{L} \mathbf{L}^*x, y \rangle \,. </math> Therefore, <math display=inline> \mathbf{A} = \mathbf{L}\mathbf{L}^* </math>. Because the underlying vector space is finite-dimensional, all topologies on the space of operators are equivalent. So <math display=inline> \left( \mathbf{L}_k \right)_k</math> tends to <math display=inline> \mathbf{L}</math> in norm means <math display=inline> \left( \mathbf{L}_k \right)_k</math> tends to <math display=inline> \mathbf{L}</math> entrywise. This in turn implies that, since each <math display=inline> \mathbf{L}_k</math> is lower triangular with non-negative diagonal entries, <math display=inline> \mathbf{L}</math> is also.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cholesky decomposition
(section)
Add topic