Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bose–Einstein condensate
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Applications === In 1999, Danish physicist [[Lene Hau]] led a team from [[Harvard University]] which [[Slow light|slowed a beam of light]] to about 17 meters per second{{Clarify|date=January 2010|reason=group velocity and not actual velocity?}} using a superfluid.<ref>{{cite web | last = Cromie | first = William J. | title = Physicists Slow Speed of Light | website = The Harvard University Gazette | date = 18 February 1999 | url = http://news.harvard.edu/gazette/1999/02.18/light.html | access-date = 26 January 2008 }}</ref> Hau and her associates have since made a group of condensate atoms recoil from a light pulse such that they recorded the light's phase and amplitude, recovered by a second nearby condensate, in what they term "slow-light-mediated atomic matter-wave amplification" using Bose–Einstein condensates.<ref name=Ginsberg:2007/> Another current research interest is the creation of Bose–Einstein condensates in microgravity in order to use its properties for high precision [[Atom interferometer|atom interferometry]]. The first demonstration of a BEC in weightlessness was achieved in 2008 at a [[Fallturm Bremen|drop tower]] in Bremen, Germany by a consortium of researchers led by [[Ernst M. Rasel]] from [[Leibniz University Hannover]].<ref>{{Cite journal|last1=Zoest|first1=T. van|last2=Gaaloul|first2=N.|last3=Singh|first3=Y.|last4=Ahlers|first4=H.|last5=Herr|first5=W.|last6=Seidel|first6=S. T.|last7=Ertmer|first7=W.|last8=Rasel|first8=E.|last9=Eckart|first9=M.|date=2010-06-18|title=Bose–Einstein Condensation in Microgravity|journal=Science|language=en|volume=328|issue=5985|pages=1540–1543|doi=10.1126/science.1189164|pmid=20558713|bibcode=2010Sci...328.1540V|s2cid=15194813}}</ref> The same team demonstrated in 2017 the first creation of a Bose–Einstein condensate in space<ref>{{Cite news|url=http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10081/151_read-20337/#/gallery/25194|title=MAIUS 1 – First Bose–Einstein condensate generated in space|last=DLR|work=DLR Portal|access-date=2017-05-23|language=en-GB}}</ref> and it is also the subject of two upcoming experiments on the [[International Space Station]].<ref>{{Cite web|url=https://coldatomlab.jpl.nasa.gov/|title=Cold Atom Laboratory|last=Laboratory|first=Jet Propulsion|website=coldatomlab.jpl.nasa.gov|access-date=2017-05-23}}</ref><ref>{{Cite web|url=http://www.lpi.usra.edu/planetary_news/2017/03/13/2017-nasa-fundamental-physics-workshop/|title=2017 NASA Fundamental Physics Workshop {{!}} Planetary News|website=www.lpi.usra.edu|language=en-US|access-date=2017-05-23}}</ref> Researchers in the new field of [[atomtronics]] use the properties of Bose–Einstein condensates in the emerging quantum technology of matter-wave circuits.<ref>{{Cite journal |last1=Amico |first1=L. |last2=Boshier |first2=M. |last3=Birkl |first3=G. |last4=Minguzzi |first4=A.|author4-link=Anna Minguzzi |last5=Miniatura |first5=C. |last6=Kwek |first6=L.-C. |last7=Aghamalyan |first7=D. |last8=Ahufinger |first8=V. |last9=Anderson |first9=D. |last10=Andrei |first10=N. |last11=Arnold |first11=A. S. |last12=Baker |first12=M. |last13=Bell |first13=T. A. |last14=Bland |first14=T. |last15=Brantut |first15=J. P. |date=25 August 2021 |title=Roadmap on Atomtronics: State of the art and perspective |url=https://avs.scitation.org/doi/10.1116/5.0026178 |journal=AVS Quantum Science |language=en |volume=3 |issue=3 |pages=039201 |doi=10.1116/5.0026178 |arxiv=2008.04439 |bibcode=2021AVSQS...3c9201A |s2cid=235417597 |issn=2639-0213}}</ref><ref> {{cite journal |author=P. Weiss |date=12 February 2000 |title=Atomtronics may be the new electronics |journal=Science News Online |volume=157 |issue=7 |page=104 |doi=10.2307/4012185 |url=http://www.sciencenews.org/view/generic/id/69786 |jstor=4012185}} </ref> In 1970, BECs were proposed by [[Emmanuel David Tannenbaum]] for anti-[[stealth technology]].<ref>{{cite arXiv | last=Tannenbaum| first=Emmanuel David | title=Gravimetric Radar: Gravity-based detection of a point-mass moving in a static background| year=1970| eprint=1208.2377| class=physics.ins-det}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Bose–Einstein condensate
(section)
Add topic