Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Thermometer
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Indirect methods of temperature measurement == {{main|Temperature measurement#Technologies}} ;Thermal expansion : Utilizing the property of [[thermal expansion]] of various [[phases of matter]]. : Pairs of solid metals with different expansion coefficients can be used for [[Bi-metallic strip#Applications|bi-metal mechanical thermometers]]. Another design using this principle is [[Breguet's thermometer]]. : Some liquids possess relatively high expansion coefficients over a useful temperature ranges thus forming the basis for an [[alcohol thermometer|alcohol]] or [[mercury thermometer|mercury]] thermometer. Alternative designs using this principle are the [[reversing thermometer]] and [[Beckmann thermometer|Beckmann differential thermometer]]. : As with liquids, gases can also be used to form a [[gas thermometer]]. ;Pressure : [[Vapour pressure thermometer]] ;Density : [[Galileo thermometer]]<ref name=Ring2007>{{cite journal |title=The historical development of temperature measurement in medicine |author=E.F.J. Ring |journal=Infrared Physics & Technology |volume=49 |issue=3 |pages=297–301 |doi=10.1016/j.infrared.2006.06.029 |date=January 2007 |bibcode=2007InPhT..49..297R}}</ref> ;Thermochromism : Some compounds exhibit [[thermochromism]] at distinct temperature changes. Thus by tuning the phase transition temperatures for a series of substances the temperature can be quantified in discrete increments, a form of [[digitization]]. This is the basis for a [[liquid crystal thermometer]]. : ;Band edge thermometry (BET) : Band edge thermometry (BET) takes advantage of the temperature-dependence of the band gap of semiconductor materials to provide very precise optical (''i.e.'' non-contact) temperature measurements.<ref>{{Cite web|url=https://uwaterloo.ca/molecular-beam-epitaxy/facilities/epi-growth-and-monitoring/band-edge-thermometry|title=Band-edge thermometry|date=2014-08-19|website=Molecular Beam Epitaxy Research Group|access-date=2019-08-14}}</ref> BET systems require a specialized optical system, as well as custom data analysis software.<ref>{{Cite journal|last=Johnson|first=Shane|date=May 1998|title=In situ temperature control of molecular beam epitaxy growth using band-edge thermometry|journal=Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures|volume=16|issue=3|pages=1502–1506|doi=10.1116/1.589975|bibcode=1998JVSTB..16.1502J|hdl=2286/R.I.27894|hdl-access=free}}</ref><ref>{{Cite web|title=The truth behind today's wafer temperature methods: Band-edge thermometry vs. emissivity-corrected pyrometry|last=Wissman|first=Barry|date=June 2016|url=https://www.k-space.com/wp-content/uploads/kSA_Band_Edge_vs_ECP.pdf|access-date=December 22, 2020}}</ref> ;{{visible anchor|Blackbody radiation}} : [[File:1024 Pyrometer-8445.jpg|thumbnail|An infrared thermometer is a kind of [[pyrometer]] ([[bolometer]]).]]All objects above [[absolute zero]] emit [[blackbody radiation]] for which the spectra is directly proportional to the temperature. This property is the basis for a [[pyrometer]] or [[infrared thermometer]] and [[thermography]]. It has the advantage of remote temperature sensing; it does not require contact or even close proximity unlike most thermometers. At higher temperatures, blackbody radiation becomes visible and is described by the [[colour temperature]]. For example a glowing heating element or an approximation of a [[star#Temperature|star's surface temperature]]. ;Fluorescence : [[Phosphor thermometry]] ;Optical absorbance spectra : [[Fiber optical thermometer]] ;Electrical resistance : [[Resistance thermometer]] which use materials such as [[Balco alloy]] : [[Thermistor]] : [[Coulomb blockade|Coulomb blockade thermometer]] ;Electrical potential : [[Thermocouples]] are useful over a wide temperature range from cryogenic temperatures to over 1000°C, but typically have an error of ±0.5-1.5°C. : [[Silicon bandgap temperature sensor]]s are commonly found packaged in integrated circuits with accompanying [[analog-to-digital converter|ADC]] and interface such as [[I2C|I<sup>2</sup>C]]. Typically they are specified to work within about —50 to 150°C with accuracies in the ±0.25 to 1°C range but can be improved by [[product binning|binning]].<ref>{{cite web |url=http://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en544703 |title=MCP9804: ±0.25°C Typical Accuracy Digital Temperature Sensor |date=2012 |publisher=Microchip |access-date=2017-01-03}}</ref><ref>{{cite web |url=http://www.silabs.com/Support%20Documents/TechnicalDocs/Si7050-1-3-4-5-A20.pdf |title=Si7050/1/3/4/5-A20: I2C Temperature Sensors |date=2016 |publisher=Silicon Labs |access-date=2017-01-03}}</ref> ;Electrical resonance : [[Quartz thermometer]] ;Nuclear magnetic resonance : [[Chemical shift]] is temperature dependent. This property is used to calibrate the thermostat of [[nuclear magnetic resonance|NMR]] probes, usually using [[methanol]] or [[ethylene glycol]].<ref>{{cite journal|last1=Findeisen|first1=M.|last2=Brand|first2=T.|last3=Berger|first3=S.|title=A1H-NMR thermometer suitable for cryoprobes|journal=Magnetic Resonance in Chemistry|date=February 2007|volume=45|issue=2|pages=175–178|doi=10.1002/mrc.1941|pmid=17154329|s2cid=43214876}}</ref><ref>{{cite book|last1=Braun|first1=Stefan Berger; Siegmar|title=200 and more NMR experiments : a practical course|date=2004|publisher=WILEY-VCH|location=Weinheim|isbn=978-3-527-31067-8|edition=[3. ed.].|url=http://ca.wiley.com/WileyCDA/WileyTitle/productCd-3527310673.html}}</ref> This can potentially be problematic for internal standards which are usually assumed to have a defined chemical shift (e.g 0 ppm for [[tetramethylsilane|TMS]]) but in fact exhibit a temperature dependence.<ref>{{cite journal|last1=Hoffman|first1=Roy E.|last2=Becker|first2=Edwin D.|title=Temperature dependence of the 1H chemical shift of tetramethylsilane in chloroform, methanol, and dimethylsulfoxide|journal=Journal of Magnetic Resonance|date=September 2005|volume=176|issue=1|pages=87–98|doi=10.1016/j.jmr.2005.05.015|pmid=15996496|bibcode=2005JMagR.176...87H|url=https://zenodo.org/record/1259141}}</ref> ;Magnetic susceptibility : {{See also|Paramagnetism#Curie's law}} : Above the [[Curie temperature]], the [[magnetic susceptibility]] of a paramagnetic material exhibits an inverse temperature dependence. This phenomenon is the basis of a magnetic [[cryometer]].<ref>{{cite journal|last1=Krusius|first1=Matti|title=Magnetic thermometer|journal=AccessScience|date=2014|doi=10.1036/1097-8542.398650}}</ref><ref>{{cite book|last1=Sergatskov|first1=D. A.|title=AIP Conference Proceedings|volume=684|pages=1009–1014|chapter=New Paramagnetic Susceptibility Thermometers for Fundamental Physics Measurements|date=Oct 2003|doi=10.1063/1.1627261|chapter-url=http://authors.library.caltech.edu/27470/1/SERaipcp03.pdf|url=https://authors.library.caltech.edu/27470/1/SERaipcp03.pdf}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Thermometer
(section)
Add topic