Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Protein
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Structure prediction=== [[File:225 Peptide Bond-01.jpg|thumb|right|upright=1.6|Constituent amino-acids can be analyzed to predict secondary, tertiary and quaternary protein structure, in this case hemoglobin containing [[heme]] units]] {{Main|Protein structure prediction|List of protein structure prediction software}} Complementary to the field of structural genomics, ''protein structure prediction'' develops efficient [[mathematical model]]s of proteins to computationally predict the molecular formations in theory, instead of detecting structures with laboratory observation.<ref name=Zhang2008/> The most successful type of structure prediction, known as [[homology modeling]], relies on the existence of a "template" structure with sequence similarity to the protein being modeled; structural genomics' goal is to provide sufficient representation in solved structures to model most of those that remain.<ref name=Xiang2006/> Although producing accurate models remains a challenge when only distantly related template structures are available, it has been suggested that [[sequence alignment]] is the bottleneck in this process, as quite accurate models can be produced if a "perfect" sequence alignment is known.<ref name=Zhang2005/> Many structure prediction methods have served to inform the emerging field of [[protein engineering]], in which novel protein folds have already been designed.<ref name=Kuhlman2003/> Many proteins (in eukaryotes ~33%) contain large unstructured but biologically functional segments and can be classified as [[intrinsically disordered proteins]]. Predicting and analysing protein disorder is an important part of protein structure characterisation.<ref>{{cite journal | vauthors = Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT | title = Prediction and functional analysis of native disorder in proteins from the three kingdoms of life | journal = Journal of Molecular Biology | volume = 337 | issue = 3 | pages = 635β645 | date = March 2004 | pmid = 15019783 | doi = 10.1016/j.jmb.2004.02.002 | citeseerx = 10.1.1.120.5605 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Protein
(section)
Add topic