Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Progesterone
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Metabolism=== The [[metabolism]] of progesterone is rapid and extensive and occurs mainly in the [[liver]],<ref name="FalconeHurd2007">{{cite book|vauthors=Falcone T, Hurd WW|title=Clinical Reproductive Medicine and Surgery|url=https://books.google.com/books?id=fOPtaEIKvcIC&pg=PA22|year=2007|publisher=Elsevier Health Sciences|isbn=978-0-323-03309-1|pages=22–|access-date=6 November 2016|archive-date=10 January 2023|archive-url=https://web.archive.org/web/20230110014156/https://books.google.com/books?id=fOPtaEIKvcIC&pg=PA22|url-status=live}}</ref><ref name="Cupps1991">{{cite book | vauthors = Cupps PT |title=Reproduction in Domestic Animals|url=https://books.google.com/books?id=bbb-ow0N7K4C&pg=PA101|date=20 February 1991|publisher=Elsevier|isbn=978-0-08-057109-6|pages=101–}}</ref><ref name="pmid14667980" /> though [[enzyme]]s that metabolize progesterone are also expressed widely in the [[brain]], [[skin]], and various other [[wikt:extrahepatic|extrahepatic]] [[tissue (biology)|tissue]]s.<ref name="pmid558037" /><ref name="DowdJohnson2016">{{cite book | vauthors = Dowd FJ, Johnson B, Mariotti A | title = Pharmacology and Therapeutics for Dentistry|url=https://books.google.com/books?id=6xT7DAAAQBAJ&pg=PA448|date=3 September 2016|publisher=Elsevier Health Sciences|isbn=978-0-323-44595-5|pages=448–}}</ref> Progesterone has an [[elimination half-life]] of only approximately 5 minutes in [[circulatory system|circulation]].<ref name="FalconeHurd2007" /> The metabolism of progesterone is complex, and it may form as many as 35 different [[conjugation (biochemistry)|unconjugated]] [[metabolite]]s when it is ingested orally.<ref name="pmid14667980" /><ref name="pmid16112947" /> Progesterone is highly susceptible to enzymatic [[redox|reduction]] via [[reductase]]s and [[hydroxysteroid dehydrogenase]]s due to its [[double bond]] (between the C4 and C5 positions) and its two [[ketone]]s (at the C3 and C20 positions).<ref name="pmid14667980" /> The major [[metabolic pathway]] of progesterone is reduction by [[5α-reductase]]<ref name="pmid558037" /> and [[5β-reductase]] into the dihydrogenated [[5α-dihydroprogesterone]] and [[5β-dihydroprogesterone]], respectively.<ref name="Cupps1991" /><ref name="pmid14667980">{{cite journal | vauthors = Stanczyk FZ | title = All progestins are not created equal | journal = Steroids | volume = 68 | issue = 10–13 | pages = 879–890 | date = November 2003 | pmid = 14667980 | doi = 10.1016/j.steroids.2003.08.003 | s2cid = 44601264 }}</ref><ref name="PlantZeleznik2014">{{cite book| vauthors = Plant TM, Zeleznik AJ |title=Knobil and Neill's Physiology of Reproduction|url=https://books.google.com/books?id=I1ACBAAAQBAJ&pg=PA304|date=15 November 2014|publisher=Academic Press|isbn=978-0-12-397769-4|pages=304–}}</ref><ref name="SantoroNeal-Perry2010">{{cite book|vauthors=Santoro NF, Neal-Perry G|title=Amenorrhea: A Case-Based, Clinical Guide|url=https://books.google.com/books?id=4836MLkPoIYC&pg=PA13|date=11 September 2010|publisher=Springer Science & Business Media|isbn=978-1-60327-864-5|pages=13–|access-date=6 November 2016|archive-date=14 January 2023|archive-url=https://web.archive.org/web/20230114025033/https://books.google.com/books?id=4836MLkPoIYC&pg=PA13|url-status=live}}</ref> This is followed by the further reduction of these metabolites via [[3α-hydroxysteroid dehydrogenase]] and [[3β-hydroxysteroid dehydrogenase]] into the tetrahydrogenated [[allopregnanolone]], [[pregnanolone]], [[isopregnanolone]], and [[epipregnanolone]].<ref name="pmid21094889">{{cite book | vauthors = Reddy DS | title = Sex Differences in the Human Brain, their Underpinnings and Implications | chapter = Neurosteroids | series = Progress in Brain Research | volume = 186 | pages = 113–37 | year = 2010 | publisher = Elsevier | pmid = 21094889 | pmc = 3139029 | doi = 10.1016/B978-0-444-53630-3.00008-7 | isbn = 9780444536303 }}</ref><ref name="Cupps1991" /><ref name="pmid14667980" /><ref name="PlantZeleznik2014" /> Subsequently, [[20α-hydroxysteroid dehydrogenase]] and [[20β-hydroxysteroid dehydrogenase]] reduce these metabolites to form the corresponding hexahydrogenated [[pregnanediol]]s (eight different [[isomer]]s in total),<ref name="Cupps1991" /><ref name="SantoroNeal-Perry2010" /> which are then conjugated via [[glucuronidation]] and/or [[sulfation]], released from the liver into circulation, and [[excretion|excreted]] by the [[kidney]]s into the [[urine]].<ref name="FalconeHurd2007" /><ref name="pmid14667980" /> The major metabolite of progesterone in the urine is the 3α,5β,20α isomer of [[pregnanediol glucuronide]], which has been found to constitute 15 to 30% of an injection of progesterone.<ref name="Josimovich2013" /><ref name="BaulieuKelly1990">{{cite book| vauthors = Baulieu E, Kelly PA |title=Hormones: From Molecules to Disease|url=https://books.google.com/books?id=Seddp4-dulIC&pg=PA401|date=30 November 1990|publisher=Springer Science & Business Media|isbn=978-0-412-02791-8|pages=401–}}</ref> Other metabolites of progesterone formed by the enzymes in this pathway include [[3α-dihydroprogesterone]], [[3β-dihydroprogesterone]], [[20α-dihydroprogesterone]], and [[20β-dihydroprogesterone]], as well as various combination products of the enzymes aside from those already mentioned.<ref name="Josimovich2013" /><ref name="pmid14667980" /><ref name="BaulieuKelly1990" /><ref name="pmid21182831">{{cite journal | vauthors = Beranič N, Gobec S, Rižner TL | title = Progestins as inhibitors of the human 20-ketosteroid reductases, AKR1C1 and AKR1C3 | journal = Chemico-Biological Interactions | volume = 191 | issue = 1–3 | pages = 227–233 | date = May 2011 | pmid = 21182831 | doi = 10.1016/j.cbi.2010.12.012 | bibcode = 2011CBI...191..227B }}</ref> Progesterone can also first be [[hydroxylation|hydroxylated]] (see below) and then reduced.<ref name="pmid14667980" /> Endogenous progesterone is metabolized approximately 50% into 5α-dihydroprogesterone in the [[corpus luteum]], 35% into 3β-dihydroprogesterone in the liver, and 10% into 20α-dihydroprogesterone.<ref name="pmid15492972">{{cite journal | vauthors = Anderson GD, Odegard PS | title = Pharmacokinetics of estrogen and progesterone in chronic kidney disease | journal = Advances in Chronic Kidney Disease | volume = 11 | issue = 4 | pages = 357–360 | date = October 2004 | pmid = 15492972 | doi = 10.1053/j.ackd.2004.07.001 }}</ref> Relatively small portions of progesterone are [[hydroxylation|hydroxylated]] via [[17α-hydroxylase]] (CYP17A1) and [[21-hydroxylase]] (CYP21A2) into [[17α-hydroxyprogesterone]] and [[11-deoxycorticosterone]] (21-hydroxyprogesterone), respectively,<ref name="pmid16112947">{{cite journal | vauthors = Kuhl H | title = Pharmacology of estrogens and progestogens: influence of different routes of administration | journal = Climacteric | volume = 8 | issue = Suppl 1 | pages = 3–63 | date = August 2005 | pmid = 16112947 | doi = 10.1080/13697130500148875 | s2cid = 24616324 }}</ref> and [[pregnanetriol]]s are formed secondarily to 17α-hydroxylation.<ref name="GreenblattBrogan2016">{{cite book| vauthors = Greenblatt JM, Brogan K |title=Integrative Therapies for Depression: Redefining Models for Assessment, Treatment and Prevention|url=https://books.google.com/books?id=GpHwCgAAQBAJ&pg=PA201|date=27 April 2016|publisher=CRC Press|isbn=978-1-4987-0230-0|pages=201–}}</ref><ref name="Graham2012">{{cite book|vauthors=Graham C|title=Reproductive Biology of the Great Apes: Comparative and Biomedical Perspectives|url=https://books.google.com/books?id=iUA0CdGhYksC&pg=PA179|date=2 December 2012|publisher=Elsevier|isbn=978-0-323-14971-6|pages=179–|access-date=6 November 2016|archive-date=14 January 2023|archive-url=https://web.archive.org/web/20230114024936/https://books.google.com/books?id=iUA0CdGhYksC&pg=PA179|url-status=live}}</ref> Even smaller amounts of progesterone may be also hydroxylated via [[11β-hydroxylase]] (CYP11B1) and to a lesser extent via [[aldosterone synthase]] (CYP11B2) into [[11β-hydroxyprogesterone]].<ref name="pmid23322723">{{cite journal | vauthors = Strushkevich N, Gilep AA, Shen L, Arrowsmith CH, Edwards AM, Usanov SA, Park HW | title = Structural insights into aldosterone synthase substrate specificity and targeted inhibition | journal = Molecular Endocrinology | volume = 27 | issue = 2 | pages = 315–324 | date = February 2013 | pmid = 23322723 | pmc = 5417327 | doi = 10.1210/me.2012-1287 }}</ref><ref name="pmid29277707">{{cite journal | vauthors = van Rooyen D, Gent R, Barnard L, Swart AC | title = The in vitro metabolism of 11β-hydroxyprogesterone and 11-ketoprogesterone to 11-ketodihydrotestosterone in the backdoor pathway | journal = The Journal of Steroid Biochemistry and Molecular Biology | volume = 178 | pages = 203–212 | date = April 2018 | pmid = 29277707 | doi = 10.1016/j.jsbmb.2017.12.014 | s2cid = 3700135 }}</ref><ref name=wj/> In addition, progesterone can be hydroxylated in the liver by other [[cytochrome P450]] enzymes which are not steroid-specific.<ref name="Piccinato2008">{{cite book| vauthors = de Azevedo Piccinato C |title=Regulation of Steroid Metabolism and the Hepatic Transcriptome by Estradiol and Progesterone|url=https://books.google.com/books?id=2nlbQ12QrSsC&pg=PA24|year=2008|isbn=978-1-109-04632-8|pages=24–25}}{{Dead link|date=February 2023 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> 6β-Hydroxylation, which is catalyzed mainly by [[CYP3A4]], is the major transformation, and is responsible for approximately 70% of cytochrome P450-mediated progesterone metabolism.<ref name="Piccinato2008" /> Other routes include 6α-, 16α-, and 16β-hydroxylation.<ref name="pmid14667980" /> However, treatment of women with [[ketoconazole]], a strong CYP3A4 inhibitor, had minimal effects on progesterone levels, producing only a slight and non-significant increase, and this suggests that cytochrome P450 enzymes play only a small role in progesterone metabolism.<ref name="pmid1825737">{{cite journal | vauthors = Akalin S | title = Effects of ketoconazole in hirsute women | journal = Acta Endocrinologica | volume = 124 | issue = 1 | pages = 19–22 | date = January 1991 | pmid = 1825737 | doi = 10.1530/acta.0.1240019 | s2cid = 9831739 }}</ref> {{Progesterone metabolism||align=center|caption=This diagram illustrates the [[metabolic pathway]]s involved in the [[metabolism]] of progesterone in humans. In addition to the [[biotransformation|transformation]]s shown in the diagram, [[conjugation (biochemistry)|conjugation]], specifically [[glucuronidation]] and [[sulfation]], occurs with [[metabolite]]s of progesterone that have one or more available [[hydroxyl group|hydroxyl]] (–OH) [[functional group|group]]s.}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Progesterone
(section)
Add topic